- -

Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Millán, Pablo es_ES
dc.contributor.author Orihuela, Luis es_ES
dc.contributor.author Vivas, Carlos es_ES
dc.contributor.author Rubio, Francisco R. es_ES
dc.date.accessioned 2020-05-25T19:13:19Z
dc.date.available 2020-05-25T19:13:19Z
dc.date.issued 2012-01-09
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144311
dc.description.abstract [EN] This paper deals with the problem of optimal control design for linear network control systems (NCS) with L2-gain disturbance rejection. Networked control systems close the control loop using a communication network, that usually accounts for network-induced delays and packet dropouts. Resorting to Lyapunov Krasovskii functionals (LKF), the problem of stabilization of NCS with joint performance index optimization and L2- gain disturbance rejection is addressed. The paper initially develops a general solution for the problem, then an specific LKF is particularized to provide a solution in terms of linear matrix inequalities. Performance of the proposed control structure is shown by simulations comparing with LQR control on an intervehicle distance regulation problem. es_ES
dc.description.abstract [ES] En el presente trabajo se estudia el control óptimo con rechazo de perturbaciones L2 para sistemas lineales controlados a través de red. En estos sistemas el lazo de control se cierra utilizando una red de comunicaciones. Entre los problemas que introduce la red se encuentran posibles retrasos, en general aleatorios, así como pérdidas de paquetes. Desde un enfoque basado en funcionales de Lyapunov- Krasovskii (LKF) se aborda el diseño de controladores óptimos que, dado un nivel deseado de atenuación de perturbaciones, estabilicen el sistema minimizando a su vez un funcional de coste. En el artículo se desarrolla, en primer lugar, una formulación y solución general para el problema. Posteriormente, se resuelve para un funcional de Lyapunov-Krasovskii particular. El comportamiento de los controladores obtenidos se compara con el dado por un control clásico LQR en un escenario de control de distancia en carretera. es_ES
dc.description.sponsorship Los autores agradecen al proyecto CICYT (DPI2010-19154),y a la Comisión Europea (EC) (FeedNetBack Project, grant agreement 223866), por financiar este trabajo. es_ES
dc.language Español es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Communication networks es_ES
dc.subject Delay compensation es_ES
dc.subject Lyapunov methods es_ES
dc.subject Optimal control es_ES
dc.subject Delays es_ES
dc.subject Redes de comunicación es_ES
dc.subject Compensación de retrasos es_ES
dc.subject Métodos de Lyapunov es_ES
dc.subject Control óptimo es_ES
dc.subject Retardo temporal es_ES
dc.title Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii es_ES
dc.title.alternative Optimal L2-gain networked control design with Lyapunov Krasovskii functionals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2011.11.002
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-19154/ES/CONTROL REALIMENTADO DE SISTEMAS INTEGRADOS EN REDES INALAMBRICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/223866/EU/Feedback design for wireless networked systems/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Millán, P.; Orihuela, L.; Vivas, C.; Rubio, FR. (2012). Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii. Revista Iberoamericana de Automática e Informática industrial. 9(1):14-23. https://doi.org/10.1016/j.riai.2011.11.002 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2011.11.002 es_ES
dc.description.upvformatpinicio 14 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9623 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Azimi-Sadjadi, B., December 2003. Stability of networked control systems in the presence of packet losses. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii, USA, pp. 676-681. es_ES
dc.description.references Branicky, M. S., Borkar, V. S., & Mitter, S. K. (1998). A unified framework for hybrid control: model and optimal control theory. IEEE Transactions on Automatic Control, 43(1), 31-45. doi:10.1109/9.654885 es_ES
dc.description.references Delfour, M. C., McCalla, C., & Mitter, S. K. (1975). Stability and the Infinite-Time Quadratic Cost Problem for Linear Hereditary Differential Systems. SIAM Journal on Control, 13(1), 48-88. doi:10.1137/0313004 es_ES
dc.description.references Dormido, S., Sánchez, J., & Kofman, E. (2008). Muestreo, Control y Comunicación Basados en Eventos. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(1), 5-26. doi:10.1016/s1697-7912(08)70120-1 es_ES
dc.description.references El Ghaoui, L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 42(8), 1171-1176. doi:10.1109/9.618250 es_ES
dc.description.references Esfahani, S. H., Moheimani, S. O. R., & Petersen, I. R. (1998). LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems. IEE Proceedings - Control Theory and Applications, 145(6), 491-498. doi:10.1049/ip-cta:19982405 es_ES
dc.description.references Gupta, V., Hassibi, B., & Murray, R. M. (2007). Optimal LQG control across packet-dropping links. Systems & Control Letters, 56(6), 439-446. doi:10.1016/j.sysconle.2006.11.003 es_ES
dc.description.references Hale, J.C., Verduyn Lunel, S.M., 1993. Introduction of functional di_erential equations. Springer, New York. es_ES
dc.description.references Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE, 95(1), 138-162. doi:10.1109/jproc.2006.887288 es_ES
dc.description.references Hokayem, P.F., Abdallah, C.T., June 2004. Inherent issues in networked control systems: a survey. In: Proceedings of the American Control Conference. Boston, Massachusetts, USA, pp. 4897-4902. es_ES
dc.description.references Jiang, X., & Han, Q.-L. (2008). New stability criteria for linear systems with interval time-varying delay. Automatica, 44(10), 2680-2685. doi:10.1016/j.automatica.2008.02.020 es_ES
dc.description.references Jiang, X., Han, Q.-L., Liu, S., & Xue, A. (2008). A New $H_{{\bm \infty}}$ Stabilization Criterion for Networked Control Systems. IEEE Transactions on Automatic Control, 53(4), 1025-1032. doi:10.1109/tac.2008.919547 es_ES
dc.description.references Kosmidou, O. I., & Boutalis, Y. S. (2006). A linear matrix inequality approach for guaranteed cost control of systems with state and input delays. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 36(5), 936-942. doi:10.1109/tsmca.2005.855788 es_ES
dc.description.references Mahmoud, M.S., 2000. Robust Control and Filtering for Time-delay Systems. Marcel Dekker, Inc., New York. es_ES
dc.description.references Meng, X., Lam, J., & Gao, H. (2009). Network-basedH∞control for stochastic systems. International Journal of Robust and Nonlinear Control, 19(3), 295-312. doi:10.1002/rnc.1307 es_ES
dc.description.references Naghshtabrizi, P., Hespanha, J., December 2005. Designing an observer-based controller for a network control system. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain, pp. 848-853. es_ES
dc.description.references Nikolakopoulos, G., Panousopoulou, A., & Tzes, A. (2008). Experimental controller tuning and QoS optimization of a wireless transmission scheme for real-time remote control applications. Control Engineering Practice, 16(3), 333-346. doi:10.1016/j.conengprac.2007.04.015 es_ES
dc.description.references Ross, D. W., & Flügge-Lotz, I. (1969). An Optimal Control Problem for Systems with Differential-Difference Equation Dynamics. SIAM Journal on Control, 7(4), 609-623. doi:10.1137/0307044 es_ES
dc.description.references Salt, J., Casanova, V., Cuenca, A., & Pizá, R. (2008). Sistemas de Control Basados en Red Modelado y Diseño de Estructuras de Control. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(3), 5-20. doi:10.1016/s1697-7912(08)70157-2 es_ES
dc.description.references Shao, H. (2009). New delay-dependent stability criteria for systems with interval delay. Automatica, 45(3), 744-749. doi:10.1016/j.automatica.2008.09.010 es_ES
dc.description.references Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Sastry, S., December 2005. An LQG optimal linear controller for control systems with packet losses. In: 44th IEEE Conference on Decision and Control and the European Control Conference. Sevilla, Spain, pp. 458-463. es_ES
dc.description.references Tatikonda, S., & Mitter, S. (2004). Control Under Communication Constraints. IEEE Transactions on Automatic Control, 49(7), 1056-1068. doi:10.1109/tac.2004.831187 es_ES
dc.description.references Xiong, J., & Lam, J. (2007). Stabilization of linear systems over networks with bounded packet loss. Automatica, 43(1), 80-87. doi:10.1016/j.automatica.2006.07.017 es_ES
dc.description.references Xu, S., & Lam, J. (2007). On Equivalence and Efficiency of Certain Stability Criteria for Time-Delay Systems. IEEE Transactions on Automatic Control, 52(1), 95-101. doi:10.1109/tac.2006.886495 es_ES
dc.description.references Xu, S., & Lam, J. (2008). A survey of linear matrix inequality techniques in stability analysis of delay systems. International Journal of Systems Science, 39(12), 1095-1113. doi:10.1080/00207720802300370 es_ES
dc.description.references Yue, D., Han, Q.-L., & Lam, J. (2005). Network-based robust <mml:math altimg=«si2.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msub></mml:math> control of systems with uncertainty. Automatica, 41(6), 999-1007. doi:10.1016/j.automatica.2004.12.011 es_ES
dc.description.references Zampieri, S., July 2008. Trends in networked control systems. In: Proceedings of the 17th World Congress IFAC. Seoul, Korea, pp. 2886-2894. es_ES
dc.description.references Zhang, D., & Yu, L. (2008). Equivalence of some stability criteria for linear time-delay systems. Applied Mathematics and Computation, 202(1), 395-400. doi:10.1016/j.amc.2007.12.021 es_ES
dc.description.references Zhang, H., Duan, G., & Xie, L. (2006). Linear quadratic regulation for linear time-varying systems with multiple input delays. Automatica, 42(9), 1465-1476. doi:10.1016/j.automatica.2006.04.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem