- -

Control de Tracción en Robots Móviles con Ruedas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control de Tracción en Robots Móviles con Ruedas

Mostrar el registro completo del ítem

Fernández, R.; Aracil, R.; Armada, M. (2012). Control de Tracción en Robots Móviles con Ruedas. Revista Iberoamericana de Automática e Informática industrial. 9(4):393-405. https://doi.org/10.1016/j.riai.2012.09.008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144394

Ficheros en el ítem

Metadatos del ítem

Título: Control de Tracción en Robots Móviles con Ruedas
Otro titulo: Traction Control for Wheeled Mobile Robots
Autor: Fernández, R. Aracil, R. Armada, M.
Fecha difusión:
Resumen:
[ES] En este trabajo se presenta una solución para mejorar el rendimiento de los robots móviles con ruedas que se desplacen sobre superficies con un bajo coeficiente de fricción estática. En estas circunstancias, los robots ...[+]


[EN] This article presents a solution to improve the performance of wheeled mobile robots that move upon surfaces with small coefficient of static friction. In these circumstances the wheeled mobile robots can experience ...[+]
Palabras clave: Wheeled mobile robots , Traction force distribution , Nonlineal control , Slide , Static friction coefficient , Robots móviles , Distribución de la fuerza de tracción global , Control no lineal , Deslizamientos , Superficies con bajo coeficiente de fricción estática
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2012.09.008
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2012.09.008
Código del Proyecto:
info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FDPI-1559/ES/Robots de servicios para la mejora de la calidad de vida de los ciudadanos en áreas metropolitanas (fase II)/
Agradecimientos:
Este trabajo ha sido realizado en el marco del proyecto ROBOCITY 2030-II S2009/DPI-1559, subvencionado por la Direccion General de Investigación de la Consejería de Educacion y Cultura de la Comunidad de Madrid. Roemi ...[+]
Tipo: Artículo

References

Balaram, J. (Bob). (2000). Kinematic state estimation for a Mars rover. Robotica, 18(3), 251-262. doi:10.1017/s0263574799002234

Boh, T., Bradbeer, R. S., Hodgson, P., 2010. Terramechanics based traction control of underwater wheeled robot. In: IEEE Oceans 2010. Sydney, Australia, pp. 1-3.

Byrnes, C. I., & Isidori, A. (1989). New results and examples in nonlinear feedback stabilization. Systems & Control Letters, 12(5), 437-442. doi:10.1016/0167-6911(89)90080-7 [+]
Balaram, J. (Bob). (2000). Kinematic state estimation for a Mars rover. Robotica, 18(3), 251-262. doi:10.1017/s0263574799002234

Boh, T., Bradbeer, R. S., Hodgson, P., 2010. Terramechanics based traction control of underwater wheeled robot. In: IEEE Oceans 2010. Sydney, Australia, pp. 1-3.

Byrnes, C. I., & Isidori, A. (1989). New results and examples in nonlinear feedback stabilization. Systems & Control Letters, 12(5), 437-442. doi:10.1016/0167-6911(89)90080-7

Chen, B., Chu, C., 2010. Fuzzy sliding mode control of traction control system for electric scooter. In: IEEE 2010 Seventh International Conference on Fuzzy Systems and knowledge Discovery (FSKD 2010). pp. 691-695.

Chen, G., Zong, C., Zhang, Q., He, L., 2011. The study of traction control system for omni-directional electric vehicle. In: IEEE 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). Jilin, China, pp. 1590-1593.

Fierro, R., & Lewis, F. L. (1997). Control of a nonholomic mobile robot: Backstepping kinematics into dynamics. Journal of Robotic Systems, 14(3), 149-163. doi:10.1002/(sici)1097-4563(199703)14:3<149::aid-rob1>3.0.co;2-r

Jones, D. R., Stol, K. A., 2010. Modelling and stability control of two-wheeled robots in low-traction environments. In: Australasian Conference on Robotics and Automation. Brisbane, Australia.

Koditschek, D. E., 1987. Adaptive techniques for mechanical systems. In: Proceedings of the 5th Yale Workshop on Adaptive Systems. New Haven, CT.

The joy of feedback: nonlinear and adaptive. (1992). IEEE Control Systems, 12(3), 7-17. doi:10.1109/37.165507

Lefer, E., Nijmeijer, H., 1999. Adaptive tracking control of nonholonomic systems: an example. In: Proceedings of the 38th IEEE Conference on Decision and Control. Phoenix, Arizona, USA, pp. 2094-2099.

Lei, Z., Cui, P., Ju, H., Peng, X., 2008. Traction control on loose soil for a redundantly actuated mobile robot. In: Xiong, C., Huang, Y., Xiong, Y., Liu, H. (Eds.), Intelligent Robotics and Applications. Vol. 5314 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1155-1164.

Liu, Z., Shi, Y., Chen, H., Zhang, X., 2010. Modeling and simulation of fuzzy control to traction control system of the four-wheel-drive vehicle. In: IEEE 2010 2nd International Conference on Future Computer and Communication (ICFCC). Vol. 2. Wuhan, pp. 92-95.

Ojeda, L., & Borenstein, J. (2004). Methods for the Reduction of Odometry Errors in Over-Constrained Mobile Robots. Autonomous Robots, 16(3), 273-286. doi:10.1023/b:auro.0000025791.45313.01

Saberi, A., Kokotovic, P. V., & Sussmann, H. J. (1990). Global Stabilization of Partially Linear Composite Systems. SIAM Journal on Control and Optimization, 28(6), 1491-1503. doi:10.1137/0328079

Sakai, S., Sado, H., & Hori, Y. (1999). Motion control in an electric vehicle with four independently driven in-wheel motors. IEEE/ASME Transactions on Mechatronics, 4(1), 9-16. doi:10.1109/3516.752079

Sontag, E. D., & Sussmann, H. J. (1989). Further comments on the stabilizability of the angular velocity of a rigid body. Systems & Control Letters, 12(3), 213-217. doi:10.1016/0167-6911(89)90052-2

Tsinias, J., 1989. Sufficient Lyapunov-like conditions for stabilization. Mathe-matics of Control, Signals, and Systems 2, 343-357.

Waldron, K. J., Abdallah, M. E., 2007. An optimal traction control scheme for off-road operation of robotic vehicles. IEEE/ASME Transactions on Mechatronics 12 (2), 126-133.

Yoshida, K; Hamano, H. W. T., 2003. Slip-based traction control of a planetary rover. In: EXPERIMENTAL ROBOTICS VIII Volume 5. pp. 644-653.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem