- -

Detección de obstáculos y espacios transitables en entornos urbanos para sistemas de ayuda a la conducción basados en algoritmos de visión estéreo implementados en GPU

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Detección de obstáculos y espacios transitables en entornos urbanos para sistemas de ayuda a la conducción basados en algoritmos de visión estéreo implementados en GPU

Show full item record

Musleh, B.; De La Escalera, A.; Armingol, J. (2012). Detección de obstáculos y espacios transitables en entornos urbanos para sistemas de ayuda a la conducción basados en algoritmos de visión estéreo implementados en GPU. Revista Iberoamericana de Automática e Informática industrial. 9(4):462-473. https://doi.org/10.1016/j.riai.2012.09.013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144397

Files in this item

Item Metadata

Title: Detección de obstáculos y espacios transitables en entornos urbanos para sistemas de ayuda a la conducción basados en algoritmos de visión estéreo implementados en GPU
Secondary Title: Obstacle detection and free spaces in urban environments for advanced driver assistance systems based on stereo vision algorithms implemented in GPU
Author: Musleh, B. de la Escalera, A. Armingol, J.M.
Issued date:
Abstract:
[ES] Tanto los sistemas avanzados de ayuda a la conducción (ADAS) aplicados a la mejora de la seguridad vial, como los sistemas de navegación autónoma de vehículos, demandan sensores y algoritmos cada vez más complejos, ...[+]


[EN] Both advanced driver assistance systems (ADAS) applied to the improvement of road safety, and autonomous navigation vehicle systems require more and more complex sensors and algorithms capable of obtaining and ...[+]
Subjects: Computer Vision , Autonomous Vehicles , Detection Algorithms , Real time systems , Visión por Computador , Vehículos Autónomos , Algoritmos de Detección , Sistemas de Tiempo Real
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2012.09.013
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/j.riai.2012.09.013
Project ID:
CICYT/FEDORA/TRA2010- 20225-C03-01, TRA2011-29454-C03- 02
Thanks:
Este trabajo ha sido subvencionado por la CICYT a través del proyecto FEDORA (TRA2010- 20225-C03-01) y el proyecto Driver Distraction Detector System (TRA2011-29454-C03-02)
Type: Artículo

References

Armingol, J. M., de la Escalera, A., Hilario, C., Collado, J. M., Carrasco, J. P., Flores, M. J., … Rodríguez, F. J. (2007). IVVI: Intelligent vehicle based on visual information. Robotics and Autonomous Systems, 55(12), 904-916. doi:10.1016/j.robot.2007.09.004

Broggi, A., Cappalunga, A., Caraffi, C., Cattani, S., Ghidoni, S., Grisleri, P., Porta, P., Posterli, M., Zani, P., Beck, J., 2008. The passive sensing suite of the terramax autonomous vehicle. In: Intelligent Vehicles Symposium, 2008 IEEE. IEEE, pp. 769-774.

Broggi, A., Caraffi, C., Fedriga, R., Grisleri, P., 2005. Obstacle detection with stereo vision for off-road vehicle navigation. In: Computer Vision and Pat- tern Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer So- ciety Conference on. IEEE, pp. 65-65. [+]
Armingol, J. M., de la Escalera, A., Hilario, C., Collado, J. M., Carrasco, J. P., Flores, M. J., … Rodríguez, F. J. (2007). IVVI: Intelligent vehicle based on visual information. Robotics and Autonomous Systems, 55(12), 904-916. doi:10.1016/j.robot.2007.09.004

Broggi, A., Cappalunga, A., Caraffi, C., Cattani, S., Ghidoni, S., Grisleri, P., Porta, P., Posterli, M., Zani, P., Beck, J., 2008. The passive sensing suite of the terramax autonomous vehicle. In: Intelligent Vehicles Symposium, 2008 IEEE. IEEE, pp. 769-774.

Broggi, A., Caraffi, C., Fedriga, R., Grisleri, P., 2005. Obstacle detection with stereo vision for off-road vehicle navigation. In: Computer Vision and Pat- tern Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer So- ciety Conference on. IEEE, pp. 65-65.

Brown, M. Z., Burschka, D., & Hager, G. D. (2003). Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 993-1008. doi:10.1109/tpami.2003.1217603

Cabani, I., Toulminet, G., Bensrhair, A., 2006. A color stereo vision system for extraction of 3d edges of obstacle. In: Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE. IEEE, pp. 307-312.

Faugeras, O., Viéville, T., Theron, E., Vuillemin, J., Hotz, B., Zhang, Z., Moll, L., Bertin, P., Mathieu, H., Fua, P., et al., 1993. Real-time correlation-based stereo: algorithm, implementations and applications.

Flores, M. J., M., J. M. A., & de la Escalera, A. (2011). Sistema Avanzado de Asistencia a la Conducción para la Detección de la Somnolencia. Revista Iberoamericana de Automática e Informática Industrial RIAI, 8(3), 216-228. doi:10.1016/j.riai.2011.06.009

Guo, C., Mita, S., McAllester, D., 2009. Drivable road region detection using homography estimation and efficient belief propagation with coordinate des- cent optimization. In: Intelligent Vehicles Symposium, 2009 IEEE. IEEE, pp. 317-323.

Hautiére, N., Labayrade, R., Perrollaz, M., Aubert, D., 2006. Road scene analy- sis by stereovision: a robust and quasi-dense approach. In: Control, Automa- tion, Robotics and Vision, 2006. ICARCV’06. 9th International Conference on. IEEE, pp. 1-6.

Hirschmüller, H., Innocent, P. R., & Garibaldi, J. (2002). International Journal of Computer Vision, 47(1/3), 229-246. doi:10.1023/a:1014554110407

Hirschmuller, H., Scharstein, D., 2007. Evaluation of cost functions for stereo matching. In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE, pp. 1-8.

Hu, Z., Lamosa, F., Uchimura, K., 2005. A complete uv-disparity study for stereovision based 3d driving environment analysis. In: 3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth International Conference on. IEEE, pp. 204-211.

Hu, Z., Uchimura, K., 2005. Uv-disparity: an efficient algorithm for stereovi- sion based scene analysis. In: Intelligent Vehicles Symposium, 2005. Pro- ceedings. IEEE. IEEE, pp. 48-54.

Kim, J., Hwangbo, M., Kanade, T., 2009. Parallel algorithms to a parallel hard- ware: Designing vision algorithms for a gpu. In: Computer Vision Works- hops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, pp. 862-869.

Labayrade, R., Aubert, D., 2003a. In-vehicle obstacles detection and characteri- zation by stereovision. Proc. IEEE In-Vehicle Cognitive Comput. Vis. Syst, 1-3.

Labayrade, R., Aubert, D., 2003b. A single framework for vehicle roll, pitch, yaw estimation and obstacles detection by stereovision. In: Intelligent Vehi- cles Symposium, 2003. Proceedings. IEEE. IEEE, pp. 31-36.

Labayrade, R., Aubert, D., Tarel, J., 2002. Real time obstacle detection in ste- reovision on non flat road geometry through v-disparity representation. In: Intelligent Vehicle Symposium, 2002. IEEE. Vol. 2. IEEE, pp. 646-651.

Lee, C., Lim, Y., Kwon, S., Lee, J., 2008. Obstacle localization with a binarized v-disparity map using local maximum frequency values in stereo vision. In: Signals, Circuits and Systems, 2008. SCS 2008. 2nd International Conferen- ce on. IEEE, pp. 1-4.

Ling, B., Zeifman, M., Gibson, D., 2007. Multiple pedestrian detection using ir led stereo camera. In: Proceedings of SPIE. Vol. 6764. p. 67640A.

Musleh, B., García, F., Otamendi, J., Armingol, J. M., & De la Escalera, A. (2010). Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions. Sensors, 10(9), 8028-8053. doi:10.3390/s100908028

Nvidia, C., 2008. Programming guide.

NVIDIA, C., 2009. C programming best practices guide. Cuda Toolkit 2.

Olmeda, D., de la Escalera, A., & Armingol, J. M. (2010). Far infrared pedestrian detection and tracking for night driving. Robotica, 29(4), 495-505. doi:10.1017/s0263574710000299

Petrovskaya, A., & Thrun, S. (2009). Model based vehicle detection and tracking for autonomous urban driving. Autonomous Robots, 26(2-3), 123-139. doi:10.1007/s10514-009-9115-1

Premebida, C., Ludwig, O., Nunes, U., 2009. Exploiting lidar-based features on pedestrian detection in urban scenarios. In: Intelligent Transportation Sys- tems, 2009. ITSC’09. 12th International IEEE Conference on. IEEE, pp. 1-6.

Scharstein, D., & Szeliski, R. (2002). International Journal of Computer Vision, 47(1/3), 7-42. doi:10.1023/a:1014573219977

Soquet, N., Aubert, D., Perrollaz, M., et al., 2007. Free space estimation for autonomous navigation.

Stam, J., 2008. Stereo imaging with cuda. OpenVIDIA, january.

Zehang Sun, Bebis, G., & Miller, R. (2006). Monocular precrash vehicle detection: features and classifiers. IEEE Transactions on Image Processing, 15(7), 2019-2034. doi:10.1109/tip.2006.877062

Taylor, T., Geva, S., Boles, W., 2004. Monocular vision as a range sensor. Inter- national Conference on Computational Intelligence for Modelling, Control and Automation.

Thrun, S. (2003). Autonomous Robots, 15(2), 111-127. doi:10.1023/a:1025584807625

Wang, L., Gong, M., Gong, M., Yang, R., 2006. How far can we go with local optimization in real-time stereo matching. In: 3D Data Processing, Visua- lization, and Transmission, Third International Symposium on. IEEE, pp.129-136.

Xu, Y., Zhao, M., Wang, X., Zhang, Y., Peng, Y., Yuan, Y., Liu, H., 2009. A method of stereo obstacle detection based on image symmetrical move. In: Intelligent Vehicles Symposium, 2009 IEEE. IEEE, pp. 36-41.

Zhao, J., Whitty, M., Katupitiya, J., 2009. Detection of non flat ground surfaces using v disparity images. In: Intelligent Robots and Systems, 2009. IROS. [2009] IEEE/RSJ International Conference on. IEEE, pp. 4584-4589.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record