- -

Algoritmos Wavenet con Aplicaciones en la Aproximación de Señales: un Estudio Comparativo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Algoritmos Wavenet con Aplicaciones en la Aproximación de Señales: un Estudio Comparativo

Mostrar el registro completo del ítem

Domínguez Mayorga, C.; Espejel Rivera, M.; Ramos Velasco, L.; Ramos Fernández, J.; Escamilla Hernández, E. (2012). Algoritmos Wavenet con Aplicaciones en la Aproximación de Señales: un Estudio Comparativo. Revista Iberoamericana de Automática e Informática industrial. 9(4):347-358. https://doi.org/10.1016/j.riai.2012.09.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144399

Ficheros en el ítem

Metadatos del ítem

Título: Algoritmos Wavenet con Aplicaciones en la Aproximación de Señales: un Estudio Comparativo
Otro titulo: Wavenet Algorithms with Applications in Approximation Signals: A Comparative Study
Autor: Domínguez Mayorga, C.R. Espejel Rivera, M.A. Ramos Velasco, L.E. Ramos Fernández, J.C. Escamilla Hernández, E.
Fecha difusión:
Resumen:
[ES] En este trabajo de investigación se aplican métodos adaptables en el diseño de algoritmos computacionales, dichos algoritmos emplean redes neuronales y series de wavelets para construir “neuroaproximadores” wavenets. ...[+]


[EN] In this paper adaptable methods for computational algorithms are presented. These algorithms use neural networks and wavelet series to build neuro wavenets approximators. The algorithms obtained are applied to the ...[+]
Palabras clave: Signal processing , Self-adapting algorithms , Neural networks , Approximation algorithms , Gradient methods , Procesamiento de señales , Algoritmos auto-ajustables , Redes neuronales , Algoritmos de aproximación , Método del gradiente
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2012.09.001
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2012.09.001
Tipo: Artículo

References

Chen, D., Hui-Qiang, 2007. Approaches to realize high precision analog-to- dogital comverter based on wavelet neural network. In: International Confe- rence on Wavelet Analysis and Pattern Recognition, Beijing, China.

Daubechies, I., 1992. Ten lectures on waveletes. CBMS-NSF Regional Confe- rence Series in Applied Mathematics, SIAM.

Islas-Gómez, O., Ramos-Velasco, L., García-Lamont, J., 2010. Identificación y control wavenet de un motor de cd. Congreso Anual de la Asociación de México de Control Automático(AMCA), Puerto Vallarta, Jalisco, Mexico. [+]
Chen, D., Hui-Qiang, 2007. Approaches to realize high precision analog-to- dogital comverter based on wavelet neural network. In: International Confe- rence on Wavelet Analysis and Pattern Recognition, Beijing, China.

Daubechies, I., 1992. Ten lectures on waveletes. CBMS-NSF Regional Confe- rence Series in Applied Mathematics, SIAM.

Islas-Gómez, O., Ramos-Velasco, L., García-Lamont, J., 2010. Identificación y control wavenet de un motor de cd. Congreso Anual de la Asociación de México de Control Automático(AMCA), Puerto Vallarta, Jalisco, Mexico.

Islas-Gómez, O., Ramos-Velasco, L., Ramos-Fernández, J., García-Lamont, J., Espejel-Rivera, M., 2012. Identificación y control wavenet de un motor de ca. Revista Iberoamericana Automática e Informática (RIAI), en revisión.

Kobayashi, K., Torioka, T., 1994. A wavelet neural network for function ap- proximation and network optimization. In: Intelligent Engineering Systems Through Artificial Neural Networks, Volume 4, C.H. Dagli, B.R. Fernan- dez, J. Ghosh, and R. T. Soundar Kumara, Eds., Proceedings of the Artificial Neural Networks in Engineering (ANNIE ́94) Conference.

Li, S., Chen, S., 2002a. Function approximation using robust wavelet neural networks. In: 14th IEEE International Conference on Tools with Artificial Intelligence.

Li, S.-T., Chen, S.-C., Nov. 2002b. Function approximation using robust wa- velet neural networks. 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. Proceedings (ICTAI 2002)., 483-488.

Park, J., & Sandberg, I. W. (1991). Universal Approximation Using Radial-Basis-Function Networks. Neural Computation, 3(2), 246-257. doi:10.1162/neco.1991.3.2.246

S. Gopinath, I.K., Bhatt, R., 2004. Online system identification using wavelet neural networks. In: TENCON 2004. 2004 IEEE Region 10 Conference.

Sedighizadeh, M., Rezazadeh, A., 2008. Adaptive PID control of wind energy conversion systems using RASP1 mother wavelet basis function network. Proceeding of World Academy of Science, Engineering and Technology, 269-273.

Ting, W., Sugai, Y., Oct. 1999. A wavelet neural network for the approxima- tion of nonlinear multivariable function. IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC ‘99 Conference Proceedings. 3, 378-383.

Wei-Yen Wang, Tsu-Tian Lee, Ching-Lang Liu, & Chi-Hsu Wang. (1997). Function approximation using fuzzy neural networks with robust learning algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 27(4), 740-747. doi:10.1109/3477.604123

WEB, P., 2009. www.physionet.org/.

Ye, X., Loh, N.K., 1993. Dynamic system identification using recurrent radial basis function network. In: Proceedings of American Control Conference.

Yu, W., Li, X., June 2003. Fuzzy neural modeling using stable learning algo- rithm. Proceedings of the American Control Conference Denver, Colorado, 4542-4548.

Zhang, Q., & Benveniste, A. (1992). Wavelet networks. IEEE Transactions on Neural Networks, 3(6), 889-898. doi:10.1109/72.165591

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem