Chen, D., Hui-Qiang, 2007. Approaches to realize high precision analog-to- dogital comverter based on wavelet neural network. In: International Confe- rence on Wavelet Analysis and Pattern Recognition, Beijing, China.
Daubechies, I., 1992. Ten lectures on waveletes. CBMS-NSF Regional Confe- rence Series in Applied Mathematics, SIAM.
Islas-Gómez, O., Ramos-Velasco, L., García-Lamont, J., 2010. Identificación y control wavenet de un motor de cd. Congreso Anual de la Asociación de México de Control Automático(AMCA), Puerto Vallarta, Jalisco, Mexico.
[+]
Chen, D., Hui-Qiang, 2007. Approaches to realize high precision analog-to- dogital comverter based on wavelet neural network. In: International Confe- rence on Wavelet Analysis and Pattern Recognition, Beijing, China.
Daubechies, I., 1992. Ten lectures on waveletes. CBMS-NSF Regional Confe- rence Series in Applied Mathematics, SIAM.
Islas-Gómez, O., Ramos-Velasco, L., García-Lamont, J., 2010. Identificación y control wavenet de un motor de cd. Congreso Anual de la Asociación de México de Control Automático(AMCA), Puerto Vallarta, Jalisco, Mexico.
Islas-Gómez, O., Ramos-Velasco, L., Ramos-Fernández, J., García-Lamont, J., Espejel-Rivera, M., 2012. Identificación y control wavenet de un motor de ca. Revista Iberoamericana Automática e Informática (RIAI), en revisión.
Kobayashi, K., Torioka, T., 1994. A wavelet neural network for function ap- proximation and network optimization. In: Intelligent Engineering Systems Through Artificial Neural Networks, Volume 4, C.H. Dagli, B.R. Fernan- dez, J. Ghosh, and R. T. Soundar Kumara, Eds., Proceedings of the Artificial Neural Networks in Engineering (ANNIE ́94) Conference.
Li, S., Chen, S., 2002a. Function approximation using robust wavelet neural networks. In: 14th IEEE International Conference on Tools with Artificial Intelligence.
Li, S.-T., Chen, S.-C., Nov. 2002b. Function approximation using robust wa- velet neural networks. 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. Proceedings (ICTAI 2002)., 483-488.
Park, J., & Sandberg, I. W. (1991). Universal Approximation Using Radial-Basis-Function Networks. Neural Computation, 3(2), 246-257. doi:10.1162/neco.1991.3.2.246
S. Gopinath, I.K., Bhatt, R., 2004. Online system identification using wavelet neural networks. In: TENCON 2004. 2004 IEEE Region 10 Conference.
Sedighizadeh, M., Rezazadeh, A., 2008. Adaptive PID control of wind energy conversion systems using RASP1 mother wavelet basis function network. Proceeding of World Academy of Science, Engineering and Technology, 269-273.
Ting, W., Sugai, Y., Oct. 1999. A wavelet neural network for the approxima- tion of nonlinear multivariable function. IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC ‘99 Conference Proceedings. 3, 378-383.
Wei-Yen Wang, Tsu-Tian Lee, Ching-Lang Liu, & Chi-Hsu Wang. (1997). Function approximation using fuzzy neural networks with robust learning algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 27(4), 740-747. doi:10.1109/3477.604123
WEB, P., 2009. www.physionet.org/.
Ye, X., Loh, N.K., 1993. Dynamic system identification using recurrent radial basis function network. In: Proceedings of American Control Conference.
Yu, W., Li, X., June 2003. Fuzzy neural modeling using stable learning algo- rithm. Proceedings of the American Control Conference Denver, Colorado, 4542-4548.
Zhang, Q., & Benveniste, A. (1992). Wavelet networks. IEEE Transactions on Neural Networks, 3(6), 889-898. doi:10.1109/72.165591
[-]