Mostrar el registro sencillo del ítem
dc.contributor.author | Torres, S. | es_ES |
dc.contributor.author | Méndez, J. A. | es_ES |
dc.date.accessioned | 2020-05-28T06:41:50Z | |
dc.date.available | 2020-05-28T06:41:50Z | |
dc.date.issued | 2009-10-08 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144499 | |
dc.description.abstract | [ES] El problema del seguimiento de trayectoria en robots manipuladores ha sido abordado aplicando una gran variedad de controladores, desde estructuras sencillas basadas en PD hasta otras más complejas basadas en controladores adaptativos y robustos. Estas últimas técnicas presentan inconvenientes como la presunción de ciertas cotas en los términos de la ecuación dinámica del robot o la no inclusión de las ligaduras del sistema en el algoritmo de control. En el presente trabajo se hace una revisión de las técnicas clásicas de control de manipuladores y se introduce un conjunto de técnicas novedosas de control robusto y de control predictivo, con las que se evitan los problemas comentados. En particular se describe un controlador con una acción robusta autoadaptativa, necesaria para evitar los errores en la cancelación de términos no lineales de la dinámica del robot. Este esquema es mejorado mediante técnicas predictivas que permiten la inclusión de las ligaduras de movimiento del robot en el algoritmo de control. Se incluyen resultados reales y en simulación en un robot PUMA-560 de Unimation que prueban la bondad de dichos controladores. | es_ES |
dc.description.abstract | [EN] The tracking problem in robot manipulators has been afforded by applying a great variety of controllers, since easy designs based on PD controllers until complex control designs based on adaptive and robust algorithms. These last techniques show some drawbacks, i.e., some bounds in the robot dynamics have to be considered or the controller does not afford with the system constraints. This work makes a revision of the existing classical control techniques for manipulators and proposes a new set of robust and predictive controllers in order to avoid the mentioned problems. Particularly, a self-adaptive robust controller is described which avoids the error produced by an inexact cancellation of the nonlinear dynamics terms. This controller is improved by means of predictive algorithms that include the robot constraints in the control law. This work includes real and simulation results of a PUMA-560 arm of Unimation, which prove the satisfactory performance of the proposed controllers. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Robot manipulators | es_ES |
dc.subject | Robust Control | es_ES |
dc.subject | Adaptive Control | es_ES |
dc.subject | Self-adaptive Control | es_ES |
dc.subject | Predictive Control | es_ES |
dc.subject | Implementation | es_ES |
dc.subject | Real-time tasks | es_ES |
dc.subject | Manipuladores robot | es_ES |
dc.subject | Control Robusto | es_ES |
dc.subject | Control Adaptativo | es_ES |
dc.subject | Control Autoadaptativo | es_ES |
dc.subject | Control Predictivo | es_ES |
dc.subject | Implementación | es_ES |
dc.subject | Tareas en tiempo real | es_ES |
dc.title | Seguimiento de Trayectorias en Robots Manipuladores: Revisión de Soluciones y Nuevas Propuestas | es_ES |
dc.title.alternative | Tracking Problem in Robot Manipulators: Revision and New Proposals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/S1697-7912(09)70111-6 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Torres, S.; Méndez, JA. (2009). Seguimiento de Trayectorias en Robots Manipuladores: Revisión de Soluciones y Nuevas Propuestas. Revista Iberoamericana de Automática e Informática industrial. 6(4):80-92. https://doi.org/10.1016/S1697-7912(09)70111-6 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/S1697-7912(09)70111-6 | es_ES |
dc.description.upvformatpinicio | 80 | es_ES |
dc.description.upvformatpfin | 92 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\8371 | es_ES |
dc.description.references | Alonge, F., D’Ippolito, F., & Raimondi, F. M. (2003). An adaptive control law for robotic manipulator without velocity feedback. Control Engineering Practice, 11(9), 999-1005. doi:10.1016/s0967-0661(02)00232-0 | es_ES |
dc.description.references | Hardware retrofit and computed torque control of a Puma 560 Robot updating an industrial manipulator. (2004). IEEE Control Systems, 24(5), 78-82. doi:10.1109/mcs.2004.1337867 | es_ES |
dc.description.references | Corless, M., & Leitmann, G. (1981). Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Transactions on Automatic Control, 26(5), 1139-1144. doi:10.1109/tac.1981.1102785 | es_ES |
dc.description.references | DAWSON, D. M., QU, Z., & CARROLL, J. J. (1992). Tracking control of rigid-link electrically – driven robot manipulators. International Journal of Control, 56(5), 991-1006. doi:10.1080/00207179208934354 | es_ES |
dc.description.references | Desa, S., & Roth, B. (1985). Synthesis of Control Systems for Manipulators Using Multivariable Robust Servomechanism Theory. The International Journal of Robotics Research, 4(3), 18-34. doi:10.1177/027836498500400302 | es_ES |
dc.description.references | Freund, E. (1982). Fast Nonlinear Control with Arbitrary Pole-Placement for Industrial Robots and Manipulators. The International Journal of Robotics Research, 1(1), 65-78. doi:10.1177/027836498200100104 | es_ES |
dc.description.references | Fu, L.-C., & Liao, T.-L. (1990). Globally stable robust tracking of nonlinear systems using variable structure control and with an application to a robotic manipulator. IEEE Transactions on Automatic Control, 35(12), 1345-1350. doi:10.1109/9.61012 | es_ES |
dc.description.references | Ishii, C., Shen, T., & Qu, Z. (2001). Lyapunov recursive design of robust adaptive tracking control withL2-gain performance for electrically-driven robot manipulators. International Journal of Control, 74(8), 811-828. doi:10.1080/00207170010037902 | es_ES |
dc.description.references | Jaritz, A., & Spong, M. W. (1996). An experimental comparison of robust control algorithms on a direct drive manipulator. IEEE Transactions on Control Systems Technology, 4(6), 627-640. doi:10.1109/87.541692 | es_ES |
dc.description.references | Yaochu Jin. (1998). Decentralized adaptive fuzzy control of robot manipulators. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 28(1), 47-57. doi:10.1109/3477.658577 | es_ES |
dc.description.references | KOUVARITAKIS, B., ROSSITER, J. A., & CANNON, M. (1998). Linear Quadratic Feasible Predictive Control. Automatica, 34(12), 1583-1592. doi:10.1016/s0005-1098(98)80012-5 | es_ES |
dc.description.references | Kreutz, K. (1989). On manipulator control by exact linearization. IEEE Transactions on Automatic Control, 34(7), 763-767. doi:10.1109/9.29408 | es_ES |
dc.description.references | Mendes, M. F., Kraus Jr., W., & Pieri, E. R. de. (2002). Variable structure position control of an industrial robotic manipulator. Journal of the Brazilian Society of Mechanical Sciences, 24(3), 169-176. doi:10.1590/s0100-73862002000300004 | es_ES |
dc.description.references | Mendez, J. A., Kouvaritakis, B., & Rossiter, J. A. (2000). State-space approach to interpolation in MPC. International Journal of Robust and Nonlinear Control, 10(1), 27-38. doi:10.1002/(sici)1099-1239(200001)10:1<27::aid-rnc459>3.0.co;2-5 | es_ES |
dc.description.references | Ortega, R., & Spong, M. W. (1989). Adaptive motion control of rigid robots: A tutorial. Automatica, 25(6), 877-888. doi:10.1016/0005-1098(89)90054-x | es_ES |
dc.description.references | Rossiter, J. A., Kouvaritakis, B., & Bacic, M. (2004). Interpolation based computationally efficient predictive control. International Journal of Control, 77(3), 290-301. doi:10.1080/00207170310001655327 | es_ES |
dc.description.references | Slotine, J.-J. E. (1985). The Robust Control of Robot Manipulators. The International Journal of Robotics Research, 4(2), 49-64. doi:10.1177/027836498500400205 | es_ES |
dc.description.references | Slotine, J.-J. E., & Weiping Li. (1987). On the Adaptive Control of Robot Manipulators. The International Journal of Robotics Research, 6(3), 49-59. doi:10.1177/027836498700600303 | es_ES |
dc.description.references | Spong, M., & Vidyasagar, M. (1987). Robust linear compensator design for nonlinear robotic control. IEEE Journal on Robotics and Automation, 3(4), 345-351. doi:10.1109/jra.1987.1087110 | es_ES |
dc.description.references | Spong, M. W., Thorp, J. S., & Kleinwaks, J. M. (1987). Robust microprocessor control of robot manipulators. Automatica, 23(3), 373-379. doi:10.1016/0005-1098(87)90010-0 | es_ES |
dc.description.references | Spong, M. W. (1992). On the robust control of robot manipulators. IEEE Transactions on Automatic Control, 37(11), 1782-1786. doi:10.1109/9.173151 | es_ES |
dc.description.references | Su, C.-Y., & Leung, T.-P. (1993). A sliding mode controller with bound estimation for robot manipulators. IEEE Transactions on Robotics and Automation, 9(2), 208-214. doi:10.1109/70.238284 | es_ES |
dc.description.references | Torres, S., Méndez, J. A., Acosta, L., & Becerra, V. M. (2007). On improving the performance in robust controllers for robot manipulators with parametric disturbances. Control Engineering Practice, 15(5), 557-566. doi:10.1016/j.conengprac.2006.10.003 | es_ES |