- -

El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1

Show full item record

Bondía Company, J.; Vehí, J.; Palerm, CC.; Herrero, P. (2010). El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1. Revista Iberoamericana de Automática e Informática industrial. 7(2):5-20. https://doi.org/10.1016/S1697-7912(10)70021-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144994

Files in this item

Item Metadata

Title: El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1
Secondary Title: Artificial pancreas: automatic control of insulin infusion in type 1 diabetes mellitus
Author: Bondía Company, Jorge Vehí, J. Palerm, C. C. Herrero, P.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Issued date:
Abstract:
[ES] La diabetes mellitus tipo 1 es una enfermedad crónica que afecta aproximadamente a 30 millones de personas en el mundo y se caracteriza por niveles de concentración de glucosa en sangre elevados producidos por una ...[+]


[EN] Type 1 diabetes mellitus is a chronic disease that affects approximately to 30 million people worldwide and is characterized by high blood glucose concentration levels produced by an absolute deficiency of insulin. ...[+]
Subjects: Biomedical systems , Closed-loop control , PID control , Predictive control , Physiological models , Sistemas biomédicos , Control en lazo cerrado , Control PID , Control predictivo , Modelos fisiológicos
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/S1697-7912(10)70021-2
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/S1697-7912(10)70021-2
Project ID:
MICINN/DPI2007-66728-C02
Thanks:
Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Ciencia e Innovación español, a través del proyecto DPI2007-66728-C02, de la Unión Europea a través de fondos FEDER y de la Wellcome Trust.
Type: Artículo

References

Argoud, G. M., Schade, D. S., & Eaton, R. P. (1987). Insulin Suppresses Its Own Secretion In Vivo. Diabetes, 36(8), 959-962. doi:10.2337/diab.36.8.959

Arleth, T., Andreassen, S., Federici, M. O., & Benedetti, M. M. (2000). A model of the endogenous glucose balance incorporating the characteristics of glucose transporters. Computer Methods and Programs in Biomedicine, 62(3), 219-234. doi:10.1016/s0169-2607(00)00069-9

Atlas, E., Nimri, R., Miller, S., Grunberg, E. A., & Phillip, M. (2010). MD-Logic Artificial Pancreas System: A pilot study in adults with type 1 diabetes. Diabetes Care, 33(5), 1072-1076. doi:10.2337/dc09-1830 [+]
Argoud, G. M., Schade, D. S., & Eaton, R. P. (1987). Insulin Suppresses Its Own Secretion In Vivo. Diabetes, 36(8), 959-962. doi:10.2337/diab.36.8.959

Arleth, T., Andreassen, S., Federici, M. O., & Benedetti, M. M. (2000). A model of the endogenous glucose balance incorporating the characteristics of glucose transporters. Computer Methods and Programs in Biomedicine, 62(3), 219-234. doi:10.1016/s0169-2607(00)00069-9

Atlas, E., Nimri, R., Miller, S., Grunberg, E. A., & Phillip, M. (2010). MD-Logic Artificial Pancreas System: A pilot study in adults with type 1 diabetes. Diabetes Care, 33(5), 1072-1076. doi:10.2337/dc09-1830

Bailey, T., Zisser, H., & Chang, A. (2009). New Features and Performance of a Next-Generation SEVEN-Day Continuous Glucose Monitoring System with Short Lag Time. Diabetes Technology & Therapeutics, 11(12), 749-755. doi:10.1089/dia.2009.0075

Basu, R., Di Camillo, B., Toffolo, G., Basu, A., Shah, P., Vella, A., … Cobelli, C. (2003). Use of a novel triple-tracer approach to assess postprandial glucose metabolism. American Journal of Physiology-Endocrinology and Metabolism, 284(1), E55-E69. doi:10.1152/ajpendo.00190.2001

Bequette, B. W. (2005). A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas. Diabetes Technology & Therapeutics, 7(1), 28-47. doi:10.1089/dia.2005.7.28

Bergman, R. N. (2003). The Minimal Model of Glucose Regulation: A Biography. Mathematical Modeling in Nutrition and the Health Sciences, 1-19. doi:10.1007/978-1-4419-9019-8_1

Bevier, W. C., Zisser, H. C., Jovanovič, L., Finan, D. A., Palerm, C. C., Seborg, D. E., & Doyle, F. J. (2008). Use of Continuous Glucose Monitoring to Estimate Insulin Requirements in Patients with Type 1 Diabetes Mellitus during a Short Course of Prednisone. Journal of Diabetes Science and Technology, 2(4), 578-583. doi:10.1177/193229680800200408

Bliss, M. (2007). The discovery of insulin. 25th anniversary ed. The University of Chicago Press.

Bruttomesso, D., Farret, A., Costa, S., Marescotti, M. C., Vettore, M., Avogaro, A., … Maran, A. (2009). Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier. Journal of Diabetes Science and Technology, 3(5), 1014-1021. doi:10.1177/193229680900300504

Campos-Delgado, D. U., Hernandez-Ordonez, M., Femat, R., & Gordillo-Moscoso, A. (2006). Fuzzy-Based Controller for Glucose Regulation in Type-1 Diabetic Patients by Subcutaneous Route. IEEE Transactions on Biomedical Engineering, 53(11), 2201-2210. doi:10.1109/tbme.2006.879461

Caumo, A., Bergman, R. N., & Cobelli, C. (2000). Insulin Sensitivity from Meal Tolerance Tests in Normal Subjects: A Minimal Model Index. The Journal of Clinical Endocrinology & Metabolism, 85(11), 4396-4402. doi:10.1210/jcem.85.11.6982

Chassin, L. J., Wilinska, M. E., & Hovorka, R. (2004). Evaluation of glucose controllers in virtual environment: methodology and sample application. Artificial Intelligence in Medicine, 32(3), 171-181. doi:10.1016/j.artmed.2004.02.006

Clarke, W. L., Anderson, S., Farhy, L., Breton, M., Gonder-Frederick, L., Cox, D., & Kovatchev, B. (2005). Evaluating the Clinical Accuracy of Two Continuous Glucose Sensors Using Continuous Glucose-Error Grid Analysis. Diabetes Care, 28(10), 2412-2417. doi:10.2337/diacare.28.10.2412

Clarke, W. L., Anderson, S., Breton, M., Patek, S., Kashmer, L., & Kovatchev, B. (2009). Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: The Virginia Experience. Journal of Diabetes Science and Technology, 3(5), 1031-1038. doi:10.1177/193229680900300506

Cryer, P. (2002). Hypoglycaemia: The limiting factor in the glycaemic management of Type I and Type II Diabetes*. Diabetologia, 45(7), 937-948. doi:10.1007/s00125-002-0822-9

Man, C. D., Camilleri, M., & Cobelli, C. (2006). A System Model of Oral Glucose Absorption: Validation on Gold Standard Data. IEEE Transactions on Biomedical Engineering, 53(12), 2472-2478. doi:10.1109/tbme.2006.883792

Dalla Man, C., Breton, M. D., & Cobelli, C. (2009). Physical Activity into the Meal Glucose—Insulin Model of Type 1 Diabetes: In Silico Studies. Journal of Diabetes Science and Technology, 3(1), 56-67. doi:10.1177/193229680900300107

Dalla Man, C., Rizza, R. A., & Cobelli, C. (2007). Meal Simulation Model of the Glucose-Insulin System. IEEE Transactions on Biomedical Engineering, 54(10), 1740-1749. doi:10.1109/tbme.2007.893506

Dassau, E., Zisser, H., Palerm, C. C., Buckingham, B. A., Jovanovič, L., & Doyle, F. J. (2008). Modular Artificial β-Cell System: A Prototype for Clinical Research. Journal of Diabetes Science and Technology, 2(5), 863-872. doi:10.1177/193229680800200518

The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. (1993). New England Journal of Medicine, 329(14), 977-986. doi:10.1056/nejm199309303291401

(1997). Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes, 46(2), 271-286. doi:10.2337/diab.46.2.271

Doyle, F., Jovanovič, L., & Seborg, D. (2007). I. Glucose control strategies for treating type 1 diabetes mellitus. Journal of Process Control, 17(7), 572-576. doi:10.1016/j.jprocont.2007.01.013

Ellingsen, C., Dassau, E., Zisser, H., Grosman, B., Percival, M. W., Jovanovič, L., & Doyle, F. J. (2009). Safety Constraints in an Artificial Pancreatic β Cell: An Implementation of Model Predictive Control with Insulin on Board. Journal of Diabetes Science and Technology, 3(3), 536-544. doi:10.1177/193229680900300319

Fabietti, P. G., Calabrese, G., Iorio, M., Bistoni, S., Brunetti, P., Sarti, E., & Benedetti, M. M. (2001). A Mathematical Model Describing the Glycemic Response of Diabetic Patients to Meal and i.v. Infusion of Insulin. The International Journal of Artificial Organs, 24(10), 736-742. doi:10.1177/039139880102401006

Fabietti, P. G., Canonico, V., Federici, M. O., Benedetti, M. M., & Sarti, E. (2006). Control oriented model of insulin and glucose dynamics in type 1 diabetics. Medical & Biological Engineering & Computing, 44(1-2), 69-78. doi:10.1007/s11517-005-0012-2

Facchinetti, A., Sparacino, G., & Cobelli, C. (2010). Modeling the Error of Continuous Glucose Monitoring Sensor Data: Critical Aspects Discussed through Simulation Studies. Journal of Diabetes Science and Technology, 4(1), 4-14. doi:10.1177/193229681000400102

Fatourechi, M. M., Kudva, Y. C., Murad, M. H., Elamin, M. B., Tabini, C. C., & Montori, V. M. (2009). Hypoglycemia with Intensive Insulin Therapy: A Systematic Review and Meta-Analyses of Randomized Trials of Continuous Subcutaneous Insulin Infusion Versus Multiple Daily Injections. The Journal of Clinical Endocrinology & Metabolism, 94(3), 729-740. doi:10.1210/jc.2008-1415

FDA (2002). General principles of software validation; final guidance for industry and FDA staff. URL: http://www.fda.gov/cdrh/comp/guidance/938.html.

FDA: Food & Drug Administration (n.d.). http://fda.gov. Accessed on March 8, 2010.

FEND and IDF-Europe (2008). Diabetes. The Policy Puzzle: Is Europe Making Progress? 2nd edition. URL: http://www.fend.org/

Garcia-Gabin, W., J. Vehi, J. Bondia, C. Tarin and R. Calm (2008). Robust sliding mode closed-loop glucose control with meal compensation in type 1 diabetes mellitus. In: 17th IFAC World Congress.

Gillis, R., Palerm, C. C., Zisser, H., Jovanovic, L., Seborg, D. E., & Doyle, F. J. (2007). Glucose Estimation and Prediction through Meal Responses Using Ambulatory Subject Data for Advisory Mode Model Predictive Control. Journal of Diabetes Science and Technology, 1(6), 825-833. doi:10.1177/193229680700100605

Gin, H., Renard, E., Melki, V., Boivin, S., Schaepelynck-Bélicar, P., Guerci, B., … Catargi, B. (2003). Combined improvements in implantable pump technology and insulin stability allow safe and effective long term intraperitoneal insulin delivery in type 1 diabetic patients: the EVADIAC experience. Diabetes & Metabolism, 29(6), 602-607. doi:10.1016/s1262-3636(07)70075-7

Guilhem, I., Leguerrier, A., Lecordier, F., Poirier, J., & Maugendre, D. (2006). Technical risks with subcutaneous insulin infusion. Diabetes & Metabolism, 32(3), 279-284. doi:10.1016/s1262-3636(07)70281-1

Guyton, J. R., Foster, R. O., Soeldner, J. S., Tan, M. H., Kahn, C. B., Koncz, L., & Gleason, R. E. (1978). A Model of Glucose-insulin Homeostasis in Man that Incorporates the Heterogeneous Fast Pool Theory of Pancreatic Insulin Release. Diabetes, 27(10), 1027-1042. doi:10.2337/diab.27.10.1027

Herman, W. H., & Eastman, R. C. (1998). The Effects of Treatment on the Direct Costs of Diabetes. Diabetes Care, 21(Supplement_3), C19-C24. doi:10.2337/diacare.21.3.c19

Herrero, P., J. Vehí, R. Corcoy, A. Chico, B. Pons and A. de Leiva (2008). Model based fault detection in the artificial β-cell framework. In: Eighth Diabetes Technology Meeting.

Hoshino, M., Haraguchi, Y., Mizushima, I., & Sakai, M. (2009). Recent progress in mechanical artificial pancreas. Journal of Artificial Organs, 12(3), 141-149. doi:10.1007/s10047-009-0463-6

Hovorka, R. (2006). Continuous glucose monitoring and closed-loop systems. Diabetic Medicine, 23(1), 1-12. doi:10.1111/j.1464-5491.2005.01672.x

Hovorka, R. (2008). The Future of Continuous Glucose Monitoring: Closed Loop. Current Diabetes Reviews, 4(3), 269-279. doi:10.2174/157339908785294479

Hovorka, R., Shojaee-Moradie, F., Carroll, P. V., Chassin, L. J., Gowrie, I. J., Jackson, N. C., … Jones, R. H. (2002). Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. American Journal of Physiology-Endocrinology and Metabolism, 282(5), E992-E1007. doi:10.1152/ajpendo.00304.2001

Hovorka, R., Allen, J. M., Elleri, D., Chassin, L. J., Harris, J., Xing, D., … Dunger, D. B. (2010). Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. The Lancet, 375(9716), 743-751. doi:10.1016/s0140-6736(09)61998-x

Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Federici, M. O., … Wilinska, M. E. (2004). Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 25(4), 905-920. doi:10.1088/0967-3334/25/4/010

Ibbini, M., & Masadeh, M. (2005). A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics. Journal of Medical Engineering & Technology, 29(2), 64-69. doi:10.1080/03091900410001709088

JDRF: Artificial Pancreas Project (n.d.).http://jdrf.org. Accessed on March 8 2010.

Jeitler, K., Horvath, K., Berghold, A., Gratzer, T. W., Neeser, K., Pieber, T. R., & Siebenhofer, A. (2008). Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia, 51(6), 941-951. doi:10.1007/s00125-008-0974-3

Jonsson, B. (1998). The Economic Impact of Diabetes. Diabetes Care, 21(Supplement_3), C7-C10. doi:10.2337/diacare.21.3.c7

Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes. (2008). New England Journal of Medicine, 359(14), 1464-1476. doi:10.1056/nejmoa0805017

Kanderian, S. S., Weinzimer, S., Voskanyan, G., & Steil, G. M. (2009). Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in Individuals with Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(5), 1047-1057. doi:10.1177/193229680900300508

Keenan, D. B., Cartaya, R., & Mastrototaro, J. J. (2010). Accuracy of a New Real-Time Continuous Glucose Monitoring Algorithm. Journal of Diabetes Science and Technology, 4(1), 111-118. doi:10.1177/193229681000400114

King, C., Anderson, S. M., Breton, M., Clarke, W. L., & Kovatchev, B. P. (2007). Modeling of Calibration Effectiveness and Blood-to-Interstitial Glucose Dynamics as Potential Confounders of the Accuracy of Continuous Glucose Sensors during Hyperinsulinemic Clamp. Journal of Diabetes Science and Technology, 1(3), 317-322. doi:10.1177/193229680700100302

Klonoff, D. C., & Schwartz, D. M. (2000). An economic analysis of interventions for diabetes. Diabetes Care, 23(3), 390-404. doi:10.2337/diacare.23.3.390

Klonoff, D. C., & Reyes, J. S. (2009). Insulin Pump Safety Meeting: Summary Report. Journal of Diabetes Science and Technology, 3(2), 396-402. doi:10.1177/193229680900300224

Kovatchev, B., Anderson, S., Heinemann, L., & Clarke, W. (2008). Comparison of the Numerical and Clinical Accuracy of Four Continuous Glucose Monitors. Diabetes Care, 31(6), 1160-1164. doi:10.2337/dc07-2401

Kovatchev, B., Patek, S., Dassau, E., Doyle, F. J., Magni, L., … De Nicolao, G. (2009). Control to Range for Diabetes: Functionality and Modular Architecture. Journal of Diabetes Science and Technology, 3(5), 1058-1065. doi:10.1177/193229680900300509

Kovatchev, B. P., Breton, M., Dalla Man, C., & Cobelli, C. (2009). In SilicoPreclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(1), 44-55. doi:10.1177/193229680900300106

Kowalski, A. J. (2009). Can We Really Close the Loop and How Soon? Accelerating the Availability of an Artificial Pancreas: A Roadmap to Better Diabetes Outcomes. Diabetes Technology & Therapeutics, 11(S1), S-113-S-119. doi:10.1089/dia.2009.0031

Kumareswaran, K., Evans, M. L., & Hovorka, R. (2009). Artificial pancreas: an emerging approach to treat Type 1 diabetes. Expert Review of Medical Devices, 6(4), 401-410. doi:10.1586/erd.09.23

Leal, Y., Garcia-Gabin, W., Bondia, J., Esteve, E., Ricart, W., Fernandez-Real, J.-M., & Vehi, J. (2010). Real-Time Glucose Estimation Algorithm for Continuous Glucose Monitoring Using Autoregressive Models. Journal of Diabetes Science and Technology, 4(2), 391-403. doi:10.1177/193229681000400221

Lee, H., Buckingham, B. A., Wilson, D. M., & Bequette, B. W. (2009). A Closed-Loop Artificial Pancreas Using Model Predictive Control and a Sliding Meal Size Estimator. Journal of Diabetes Science and Technology, 3(5), 1082-1090. doi:10.1177/193229680900300511

Lee, S. and E. Hitt (n.d.). Continuous subcutaneous insulin infusion: Intensive treatment, flexible lifestyle. http://cme.medscape.com/viewarticle/460365.

Lehmann, E. D., Deutsch, T., Carson, E. R., & Sönksen, P. H. (1994). AIDA: an interactive diabetes advisor. Computer Methods and Programs in Biomedicine, 41(3-4), 183-203. doi:10.1016/0169-2607(94)90054-x

Magni, L., Raimondo, D. M., Bossi, L., Dalla Man, C., De Nicolao, G., Kovatchev, B., & Cobelli, C. (2007). Model Predictive Control of Type 1 Diabetes: An in Silico Trial. Journal of Diabetes Science and Technology, 1(6), 804-812. doi:10.1177/193229680700100603

Mazze, R. S., Strock, E., Borgman, S., Wesley, D., Stout, P., & Racchini, J. (2009). Evaluating the Accuracy, Reliability, and Clinical Applicability of Continuous Glucose Monitoring (CGM): Is CGM Ready for Real Time? Diabetes Technology & Therapeutics, 11(1), 11-18. doi:10.1089/dia.2008.0041

McMahon, S. K., Ferreira, L. D., Ratnam, N., Davey, R. J., Youngs, L. M., Davis, E. A., … Jones, T. W. (2007). Glucose Requirements to Maintain Euglycemia after Moderate-Intensity Afternoon Exercise in Adolescents with Type 1 Diabetes Are Increased in a Biphasic Manner. The Journal of Clinical Endocrinology & Metabolism, 92(3), 963-968. doi:10.1210/jc.2006-2263

Mecklenburg, R. S., Guinn, T. S., Sannar, C. A., & Blumenstein, B. A. (1986). Malfunction of Continuous Subcutaneous Insulin Infusion Systems: A One-Year Prospective Study of 127 Patients. Diabetes Care, 9(4), 351-355. doi:10.2337/diacare.9.4.351

Mendosa, D. (n.d.). Meter memories: how Tom, Dick, and Charlie did it. http://www.mendosa.com/memories.htm.

Menzin, J., Langley-Hawthorne, C., Friedman, M., Boulanger, L., & Cavanaugh, R. (2001). Potential Short-Term Economic Benefits of Improved Glycemic Control: A managed care perspective. Diabetes Care, 24(1), 51-55. doi:10.2337/diacare.24.1.51

Monsod, T. P., Flanagan, D. E., Rife, F., Saenz, R., Caprio, S., Sherwin, R. S., & Tamborlane, W. V. (2002). Do Sensor Glucose Levels Accurately Predict Plasma Glucose Concentrations During Hypoglycemia and Hyperinsulinemia? Diabetes Care, 25(5), 889-893. doi:10.2337/diacare.25.5.889

Mudaliar, S. R., Lindberg, F. A., Joyce, M., Beerdsen, P., Strange, P., Lin, A., & Henry, R. R. (1999). Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care, 22(9), 1501-1506. doi:10.2337/diacare.22.9.1501

Nilsson, A., Granfeldt, Y., Östman, E., Preston, T., & Björck, I. (2006). Effects of GI and content of indigestible carbohydrates of cereal-based evening meals on glucose tolerance at a subsequent standardised breakfast. European Journal of Clinical Nutrition, 60(9), 1092-1099. doi:10.1038/sj.ejcn.1602423

Oliver, N., Georgiou, P., Johnston, D., & Toumazou, C. (2009). A Benchtop Closed-loop System Controlled by a Bio-Inspired Silicon Implementation of the Pancreatic β Cell. Journal of Diabetes Science and Technology, 3(6), 1419-1424. doi:10.1177/193229680900300623

Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: a review of current and emerging technology. Diabetic Medicine, 26(3), 197-210. doi:10.1111/j.1464-5491.2008.02642.x

Omnipod Insulin Pump (n.d.). http://www.myomnipod.com/.Accessed on March 13, 2010.

Palerm, C. C., Zisser, H., Bevier, W. C., Jovanovic, L., & Doyle, F. J. (2007). Prandial Insulin Dosing Using Run-to-Run Control: Application of clinical data and medical expertise to define a suitable performance metric. Diabetes Care, 30(5), 1131-1136. doi:10.2337/dc06-2115

Parker, R. S., Doyle, F. J., & Peppas, N. A. (1999). A model-based algorithm for blood glucose control in Type I diabetic patients. IEEE Transactions on Biomedical Engineering, 46(2), 148-157. doi:10.1109/10.740877

Parker, R. S., Doyle, F. J., Ward, J. H., & Peppas, N. A. (2000). RobustH∞ glucose control in diabetes using a physiological model. AIChE Journal, 46(12), 2537-2549. doi:10.1002/aic.690461220

Patek, S. D., Bequette, B. W., Breton, M., Buckingham, B. A., Dassau, E., Doyle, F. J., … Zisser, H. (2009). In Silico Preclinical Trials: Methodology and Engineering Guide to Closed-Loop Control in Type 1 Diabetes Mellitus. Journal of Diabetes Science and Technology, 3(2), 269-282. doi:10.1177/193229680900300207

Pickup, J., & Keen, H. (2002). Continuous Subcutaneous Insulin Infusion at 25 Years: Evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care, 25(3), 593-598. doi:10.2337/diacare.25.3.593

Pinkos, A., Arreaza-Rubin, G., Heetderks, W. J., Irony, I., Joffe, H. V., Schneider, B., & Zimliki, C. L. (2007). FDA’s proactive role in the development of an artificial pancreas for the treatment of diabetes mellitus. Drug Discovery Today: Technologies, 4(1), 25-28. doi:10.1016/j.ddtec.2007.10.007

Quesada, I., Tudurí, E., Ripoll, C., & Nadal, Á. (2008). Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. Journal of Endocrinology, 199(1), 5-19. doi:10.1677/joe-08-0290

Quiroz, G., & Femat, R. (2010). Theoretical blood glucose control in hyper- and hypoglycemic and exercise scenarios by means of an algorithm. Journal of Theoretical Biology, 263(1), 154-160. doi:10.1016/j.jtbi.2009.11.015

Rebrin, K., & Steil, G. M. (2000). Can Interstitial Glucose Assessment Replace Blood Glucose Measurements? Diabetes Technology & Therapeutics, 2(3), 461-472. doi:10.1089/15209150050194332

Rebrin, K., Steil, G. M., van Antwerp, W. P., & Mastrototaro, J. J. (1999). Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. American Journal of Physiology-Endocrinology and Metabolism, 277(3), E561-E571. doi:10.1152/ajpendo.1999.277.3.e561

Renard, E. (2008). Implantable Continuous Glucose Sensors. Current Diabetes Reviews, 4(3), 169-174. doi:10.2174/157339908785294406

Renard, E., Costalat, G., Chevassus, H., & Bringer, J. (2006). Artificial β-cell: clinical experience toward an implantable closed-loop insulin delivery system. Diabetes & Metabolism, 32(5), 497-502. doi:10.1016/s1262-3636(06)72802-6

Renard, E., Place, J., Cantwell, M., Chevassus, H., & Palerm, C. C. (2009). Closed-Loop Insulin Delivery Using a Subcutaneous Glucose Sensor and Intraperitoneal Insulin Delivery: Feasibility study testing a new model for the artificial pancreas. Diabetes Care, 33(1), 121-127. doi:10.2337/dc09-1080

Renard, E., & Schaepelynck-Bélicar, P. (2007). Implantable insulin pumps. A position statement about their clinical use. Diabetes & Metabolism, 33(2), 158-166. doi:10.1016/j.diabet.2006.10.004

Rendell, M. (2008). Insulin: moments in history. Drug Development Research, 69(3), 95-100. doi:10.1002/ddr.20232

Roglic, G., & Unwin, N. (2010). Mortality attributable to diabetes: Estimates for the year 2010. Diabetes Research and Clinical Practice, 87(1), 15-19. doi:10.1016/j.diabres.2009.10.006

Ruiz-Velázquez, E., Femat, R., & Campos-Delgado, D. U. (2004). Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem. Control Engineering Practice, 12(9), 1179-1195. doi:10.1016/j.conengprac.2003.12.004

Schaller, H. C., Schaupp, L., Bodenlenz, M., Wilinska, M. E., Chassin, L. J., Wach, P., … Pieber, T. R. (2006). On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes. Diabetic Medicine, 23(1), 90-93. doi:10.1111/j.1464-5491.2006.01695.x

Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(1), 4-14. doi:10.1016/j.diabres.2009.10.007

Singh-Franco, D., Robles, G., & Gazze, D. (2007). Pramlintide acetate injection for the treatment of type 1 and type 2 diabetes mellitus. Clinical Therapeutics, 29(4), 535-562. doi:10.1016/j.clinthera.2007.04.005

Sorensen, J.T. (1985). A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. PhD thesis. Massachusetts Institute of Technology.

Steil, G. (2004). Closed-loop insulin delivery—the path to physiological glucose control. Advanced Drug Delivery Reviews, 56(2), 125-144. doi:10.1016/j.addr.2003.08.011

Steil, G. M., Rebrin, K., Darwin, C., Hariri, F., & Saad, M. F. (2006). Feasibility of Automating Insulin Delivery for the Treatment of Type 1 Diabetes. Diabetes, 55(12), 3344-3350. doi:10.2337/db06-0419

Steil, G. M., Rebrin, K., Janowski, R., Darwin, C., & Saad, M. F. (2003). Modeling β-Cell Insulin Secretion - Implications for Closed-Loop Glucose Homeostasis. Diabetes Technology & Therapeutics, 5(6), 953-964. doi:10.1089/152091503322640999

Sternberg, F., Meyerhoff, C., Mennel, F. J., Mayer, H., Bischof, F., & Pfeiffer, E. F. (1996). Does fall in tissue glucose precede fall in blood glucose? Diabetologia, 39(5), 609-612. doi:10.1007/bf00403309

Trajanoski, Z., & Wach, P. (1998). Neural predictive controller for insulin delivery using the subcutaneous route. IEEE Transactions on Biomedical Engineering, 45(9), 1122-1134. doi:10.1109/10.709556

Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). (1998). The Lancet, 352(9131), 837-853. doi:10.1016/s0140-6736(98)07019-6

Waldhäusl, W. (1989). Circadian rhythms of insulin needs and actions. Diabetes Research and Clinical Practice, 6(4), S17-S24. doi:10.1016/0168-8227(89)90074-0

Wang, J. (2008). Electrochemical Glucose Biosensors. Chemical Reviews, 108(2), 814-825. doi:10.1021/cr068123a

Wang, Y., Dassau, E., & Doyle, F. J. (2010). Closed-Loop Control of Artificial Pancreatic $\beta$ -Cell in Type 1 Diabetes Mellitus Using Model Predictive Iterative Learning Control. IEEE Transactions on Biomedical Engineering, 57(2), 211-219. doi:10.1109/tbme.2009.2024409

Weinstein, R. L., Schwartz, S. L., Brazg, R. L., Bugler, J. R., Peyser, T. A., & McGarraugh, G. V. (2007). Accuracy of the 5-Day FreeStyle Navigator Continuous Glucose Monitoring System: Comparison with frequent laboratory reference measurements. Diabetes Care, 30(5), 1125-1130. doi:10.2337/dc06-1602

Weinzimer, S. A., Steil, G. M., Swan, K. L., Dziura, J., Kurtz, N., & Tamborlane, W. V. (2008). Fully Automated Closed-Loop Insulin Delivery Versus Semiautomated Hybrid Control in Pediatric Patients With Type 1 Diabetes Using an Artificial Pancreas. Diabetes Care, 31(5), 934-939. doi:10.2337/dc07-1967

Wentholt, I. M., Vollebregt, M. A., Hart, A. A., Hoekstra, J. B., & DeVries, J. H. (2005). Comparison of a Needle-Type and a Microdialysis Continuous Glucose Monitor in Type 1 Diabetic Patients. Diabetes Care, 28(12), 2871-2876. doi:10.2337/diacare.28.12.2871

Wilinska, M. E., & Hovorka, R. (2008). Simulation models for in silico testing of closed-loop glucose controllers in type 1 diabetes. Drug Discovery Today: Disease Models, 5(4), 289-298. doi:10.1016/j.ddmod.2009.07.005

Wilinska, M. E., Chassin, L. J., Acerini, C. L., Allen, J. M., Dunger, D. B., & Hovorka, R. (2010). Simulation Environment to Evaluate Closed-Loop Insulin Delivery Systems in Type 1 Diabetes. Journal of Diabetes Science and Technology, 4(1), 132-144. doi:10.1177/193229681000400117

Wilinska, M. E., Chassin, L. J., Schaller, H. C., Schaupp, L., Pieber, T. R., & Hovorka, R. (2005). Insulin Kinetics in Type-1 Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin. IEEE Transactions on Biomedical Engineering, 52(1), 3-12. doi:10.1109/tbme.2004.839639

ZHENG, Y., KREUWEL, H. T. C., YOUNG, D. L., SHODA, L. K. M., RAMANUJAN, S., GADKAR, K. G., … WHITING, C. C. (2007). The Virtual NOD Mouse: Applying Predictive Biosimulation to Research in Type 1 Diabetes. Annals of the New York Academy of Sciences, 1103(1), 45-62. doi:10.1196/annals.1394.014

Zisser, H., Palerm, C. C., Bevier, W. C., Doyle, F. J., & Jovanovic, L. (2009). Clinical Update on Optimal Prandial Insulin Dosing Using a Refined Run-to-Run Control Algorithm. Journal of Diabetes Science and Technology, 3(3), 487-491. doi:10.1177/193229680900300312

Zisser, H., Robinson, L., Bevier, W., Dassau, E., Ellingsen, C., Doyle, F. J., & Jovanovic, L. (2008). Bolus Calculator: A Review of Four «Smart» Insulin Pumps. Diabetes Technology & Therapeutics, 10(6), 441-444. doi:10.1089/dia.2007.0284

Zisser, H. C., Bailey, T. S., Schwartz, S., Ratner, R. E., & Wise, J. (2009). Accuracy of the SEVEN® Continuous Glucose Monitoring System: Comparison with Frequently Sampled Venous Glucose Measurements. Journal of Diabetes Science and Technology, 3(5), 1146-1154. doi:10.1177/193229680900300519

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record