Mostrar el registro sencillo del ítem
dc.contributor.author | Bondía Company, Jorge | es_ES |
dc.contributor.author | Vehí, J. | es_ES |
dc.contributor.author | Palerm, C. C. | es_ES |
dc.contributor.author | Herrero, P. | es_ES |
dc.date.accessioned | 2020-06-02T13:48:01Z | |
dc.date.available | 2020-06-02T13:48:01Z | |
dc.date.issued | 2010-04-09 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144994 | |
dc.description.abstract | [ES] La diabetes mellitus tipo 1 es una enfermedad crónica que afecta aproximadamente a 30 millones de personas en el mundo y se caracteriza por niveles de concentración de glucosa en sangre elevados producidos por una deficiencia absoluta de insulina. Ello produce numerosas complicaciones a largo plazo como retinopatía, nefropatía y neuropatía entre otras. Las terapias actuales basadas en el suministro de insulina exógena (por inyecciones o bomba de insulina), no consiguen normalizar los niveles de glucosa de forma eficiente. Los avances tecnológicos en la última década en sistemas de medición continua de glucosa e infusión de insulina, han impulsado el desarrollo del páncreas artificial, o control automático de infusión de insulina. En este trabajo se presentará, a modo de tutorial, el pasado, presente y futuro de esta tecnología, tan esperada por el paciente diabético. Se revisará el estado actual de la tecnología para la sensorización y actuación, principales desafíos desde el punto de vista de control, las diferentes ``escuelas'' y estudios clínicos del desempeño de controladores, así como herramientas de validación de controladores mediante simulación. Dada la complejidad del problema, el desarrollo del páncreas artificial será de forma escalonada, redundando progresivamente en la mejora de la calidad de vida del paciente. Los grandes avances en los últimos cinco años hacen preveer un horizonte cercano para la primera generación de páncreas artificial. | es_ES |
dc.description.abstract | [EN] Type 1 diabetes mellitus is a chronic disease that affects approximately to 30 million people worldwide and is characterized by high blood glucose concentration levels produced by an absolute deficiency of insulin. That produces numerous long-term complications like retinopathy, nephropathy and neuropathy among others. Current therapies based on the exogenous delivery of insulin (through injections or an insulin pump), do not manage to normalize the glucose levels efficiently. Technological advances in the last decade in continuous glucose monitoring and insulin infusion have been a springboard for the development of the artificial pancreas, or automatic control of insulin infusion. In this work, the past, present and future of this technology, so long awaited by the diabetic patient, will be presented in the form of a tutorial. Current technology for sensorization and actuation will be reviewed, as well as main challenges from the control point of view, different “schools of thought” and clinical studies for controllers performance evaluation, and tools for the validation of controllers through simulation. Due to the complexity of the problem, the development of the artificial pancreas will be staggered, resulting progressively in an improvement of the patient’s quality of life. The big advances during last five years foresee a close horizon for a first generation of artificial pancreas. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Ciencia e Innovación español, a través del proyecto DPI2007-66728-C02, de la Unión Europea a través de fondos FEDER y de la Wellcome Trust. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Biomedical systems | es_ES |
dc.subject | Closed-loop control | es_ES |
dc.subject | PID control | es_ES |
dc.subject | Predictive control | es_ES |
dc.subject | Physiological models | es_ES |
dc.subject | Sistemas biomédicos | es_ES |
dc.subject | Control en lazo cerrado | es_ES |
dc.subject | Control PID | es_ES |
dc.subject | Control predictivo | es_ES |
dc.subject | Modelos fisiológicos | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1 | es_ES |
dc.title.alternative | Artificial pancreas: automatic control of insulin infusion in type 1 diabetes mellitus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/S1697-7912(10)70021-2 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2007-66728-C02-02/ES/CONTROL DE GLUCEMIA EN LAZO CERRADO EN PACIENTES CON DIABETES MELLITUS 1 Y PACIENTES CRITICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2007-66728-C02-01/ES/CONTROL DE GLUCEMIA EN LAZO CERRADO EN PACIENTES CON DIABETES MELLITUS 1 Y PACIENTES CRITICOS/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Bondía Company, J.; Vehí, J.; Palerm, CC.; Herrero, P. (2010). El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1. Revista Iberoamericana de Automática e Informática industrial. 7(2):5-20. https://doi.org/10.1016/S1697-7912(10)70021-2 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/S1697-7912(10)70021-2 | es_ES |
dc.description.upvformatpinicio | 5 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\8476 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Wellcome Trust | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Argoud, G. M., Schade, D. S., & Eaton, R. P. (1987). Insulin Suppresses Its Own Secretion In Vivo. Diabetes, 36(8), 959-962. doi:10.2337/diab.36.8.959 | es_ES |
dc.description.references | Arleth, T., Andreassen, S., Federici, M. O., & Benedetti, M. M. (2000). A model of the endogenous glucose balance incorporating the characteristics of glucose transporters. Computer Methods and Programs in Biomedicine, 62(3), 219-234. doi:10.1016/s0169-2607(00)00069-9 | es_ES |
dc.description.references | Atlas, E., Nimri, R., Miller, S., Grunberg, E. A., & Phillip, M. (2010). MD-Logic Artificial Pancreas System: A pilot study in adults with type 1 diabetes. Diabetes Care, 33(5), 1072-1076. doi:10.2337/dc09-1830 | es_ES |
dc.description.references | Bailey, T., Zisser, H., & Chang, A. (2009). New Features and Performance of a Next-Generation SEVEN-Day Continuous Glucose Monitoring System with Short Lag Time. Diabetes Technology & Therapeutics, 11(12), 749-755. doi:10.1089/dia.2009.0075 | es_ES |
dc.description.references | Basu, R., Di Camillo, B., Toffolo, G., Basu, A., Shah, P., Vella, A., … Cobelli, C. (2003). Use of a novel triple-tracer approach to assess postprandial glucose metabolism. American Journal of Physiology-Endocrinology and Metabolism, 284(1), E55-E69. doi:10.1152/ajpendo.00190.2001 | es_ES |
dc.description.references | Bequette, B. W. (2005). A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas. Diabetes Technology & Therapeutics, 7(1), 28-47. doi:10.1089/dia.2005.7.28 | es_ES |
dc.description.references | Bergman, R. N. (2003). The Minimal Model of Glucose Regulation: A Biography. Mathematical Modeling in Nutrition and the Health Sciences, 1-19. doi:10.1007/978-1-4419-9019-8_1 | es_ES |
dc.description.references | Bevier, W. C., Zisser, H. C., Jovanovič, L., Finan, D. A., Palerm, C. C., Seborg, D. E., & Doyle, F. J. (2008). Use of Continuous Glucose Monitoring to Estimate Insulin Requirements in Patients with Type 1 Diabetes Mellitus during a Short Course of Prednisone. Journal of Diabetes Science and Technology, 2(4), 578-583. doi:10.1177/193229680800200408 | es_ES |
dc.description.references | Bliss, M. (2007). The discovery of insulin. 25th anniversary ed. The University of Chicago Press. | es_ES |
dc.description.references | Bruttomesso, D., Farret, A., Costa, S., Marescotti, M. C., Vettore, M., Avogaro, A., … Maran, A. (2009). Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier. Journal of Diabetes Science and Technology, 3(5), 1014-1021. doi:10.1177/193229680900300504 | es_ES |
dc.description.references | Campos-Delgado, D. U., Hernandez-Ordonez, M., Femat, R., & Gordillo-Moscoso, A. (2006). Fuzzy-Based Controller for Glucose Regulation in Type-1 Diabetic Patients by Subcutaneous Route. IEEE Transactions on Biomedical Engineering, 53(11), 2201-2210. doi:10.1109/tbme.2006.879461 | es_ES |
dc.description.references | Caumo, A., Bergman, R. N., & Cobelli, C. (2000). Insulin Sensitivity from Meal Tolerance Tests in Normal Subjects: A Minimal Model Index. The Journal of Clinical Endocrinology & Metabolism, 85(11), 4396-4402. doi:10.1210/jcem.85.11.6982 | es_ES |
dc.description.references | Chassin, L. J., Wilinska, M. E., & Hovorka, R. (2004). Evaluation of glucose controllers in virtual environment: methodology and sample application. Artificial Intelligence in Medicine, 32(3), 171-181. doi:10.1016/j.artmed.2004.02.006 | es_ES |
dc.description.references | Clarke, W. L., Anderson, S., Farhy, L., Breton, M., Gonder-Frederick, L., Cox, D., & Kovatchev, B. (2005). Evaluating the Clinical Accuracy of Two Continuous Glucose Sensors Using Continuous Glucose-Error Grid Analysis. Diabetes Care, 28(10), 2412-2417. doi:10.2337/diacare.28.10.2412 | es_ES |
dc.description.references | Clarke, W. L., Anderson, S., Breton, M., Patek, S., Kashmer, L., & Kovatchev, B. (2009). Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: The Virginia Experience. Journal of Diabetes Science and Technology, 3(5), 1031-1038. doi:10.1177/193229680900300506 | es_ES |
dc.description.references | Cryer, P. (2002). Hypoglycaemia: The limiting factor in the glycaemic management of Type I and Type II Diabetes*. Diabetologia, 45(7), 937-948. doi:10.1007/s00125-002-0822-9 | es_ES |
dc.description.references | Man, C. D., Camilleri, M., & Cobelli, C. (2006). A System Model of Oral Glucose Absorption: Validation on Gold Standard Data. IEEE Transactions on Biomedical Engineering, 53(12), 2472-2478. doi:10.1109/tbme.2006.883792 | es_ES |
dc.description.references | Dalla Man, C., Breton, M. D., & Cobelli, C. (2009). Physical Activity into the Meal Glucose—Insulin Model of Type 1 Diabetes: In Silico Studies. Journal of Diabetes Science and Technology, 3(1), 56-67. doi:10.1177/193229680900300107 | es_ES |
dc.description.references | Dalla Man, C., Rizza, R. A., & Cobelli, C. (2007). Meal Simulation Model of the Glucose-Insulin System. IEEE Transactions on Biomedical Engineering, 54(10), 1740-1749. doi:10.1109/tbme.2007.893506 | es_ES |
dc.description.references | Dassau, E., Zisser, H., Palerm, C. C., Buckingham, B. A., Jovanovič, L., & Doyle, F. J. (2008). Modular Artificial β-Cell System: A Prototype for Clinical Research. Journal of Diabetes Science and Technology, 2(5), 863-872. doi:10.1177/193229680800200518 | es_ES |
dc.description.references | The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. (1993). New England Journal of Medicine, 329(14), 977-986. doi:10.1056/nejm199309303291401 | es_ES |
dc.description.references | (1997). Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes, 46(2), 271-286. doi:10.2337/diab.46.2.271 | es_ES |
dc.description.references | Doyle, F., Jovanovič, L., & Seborg, D. (2007). I. Glucose control strategies for treating type 1 diabetes mellitus. Journal of Process Control, 17(7), 572-576. doi:10.1016/j.jprocont.2007.01.013 | es_ES |
dc.description.references | Ellingsen, C., Dassau, E., Zisser, H., Grosman, B., Percival, M. W., Jovanovič, L., & Doyle, F. J. (2009). Safety Constraints in an Artificial Pancreatic β Cell: An Implementation of Model Predictive Control with Insulin on Board. Journal of Diabetes Science and Technology, 3(3), 536-544. doi:10.1177/193229680900300319 | es_ES |
dc.description.references | Fabietti, P. G., Calabrese, G., Iorio, M., Bistoni, S., Brunetti, P., Sarti, E., & Benedetti, M. M. (2001). A Mathematical Model Describing the Glycemic Response of Diabetic Patients to Meal and i.v. Infusion of Insulin. The International Journal of Artificial Organs, 24(10), 736-742. doi:10.1177/039139880102401006 | es_ES |
dc.description.references | Fabietti, P. G., Canonico, V., Federici, M. O., Benedetti, M. M., & Sarti, E. (2006). Control oriented model of insulin and glucose dynamics in type 1 diabetics. Medical & Biological Engineering & Computing, 44(1-2), 69-78. doi:10.1007/s11517-005-0012-2 | es_ES |
dc.description.references | Facchinetti, A., Sparacino, G., & Cobelli, C. (2010). Modeling the Error of Continuous Glucose Monitoring Sensor Data: Critical Aspects Discussed through Simulation Studies. Journal of Diabetes Science and Technology, 4(1), 4-14. doi:10.1177/193229681000400102 | es_ES |
dc.description.references | Fatourechi, M. M., Kudva, Y. C., Murad, M. H., Elamin, M. B., Tabini, C. C., & Montori, V. M. (2009). Hypoglycemia with Intensive Insulin Therapy: A Systematic Review and Meta-Analyses of Randomized Trials of Continuous Subcutaneous Insulin Infusion Versus Multiple Daily Injections. The Journal of Clinical Endocrinology & Metabolism, 94(3), 729-740. doi:10.1210/jc.2008-1415 | es_ES |
dc.description.references | FDA (2002). General principles of software validation; final guidance for industry and FDA staff. URL: http://www.fda.gov/cdrh/comp/guidance/938.html. | es_ES |
dc.description.references | FDA: Food & Drug Administration (n.d.). http://fda.gov. Accessed on March 8, 2010. | es_ES |
dc.description.references | FEND and IDF-Europe (2008). Diabetes. The Policy Puzzle: Is Europe Making Progress? 2nd edition. URL: http://www.fend.org/ | es_ES |
dc.description.references | Garcia-Gabin, W., J. Vehi, J. Bondia, C. Tarin and R. Calm (2008). Robust sliding mode closed-loop glucose control with meal compensation in type 1 diabetes mellitus. In: 17th IFAC World Congress. | es_ES |
dc.description.references | Gillis, R., Palerm, C. C., Zisser, H., Jovanovic, L., Seborg, D. E., & Doyle, F. J. (2007). Glucose Estimation and Prediction through Meal Responses Using Ambulatory Subject Data for Advisory Mode Model Predictive Control. Journal of Diabetes Science and Technology, 1(6), 825-833. doi:10.1177/193229680700100605 | es_ES |
dc.description.references | Gin, H., Renard, E., Melki, V., Boivin, S., Schaepelynck-Bélicar, P., Guerci, B., … Catargi, B. (2003). Combined improvements in implantable pump technology and insulin stability allow safe and effective long term intraperitoneal insulin delivery in type 1 diabetic patients: the EVADIAC experience. Diabetes & Metabolism, 29(6), 602-607. doi:10.1016/s1262-3636(07)70075-7 | es_ES |
dc.description.references | Guilhem, I., Leguerrier, A., Lecordier, F., Poirier, J., & Maugendre, D. (2006). Technical risks with subcutaneous insulin infusion. Diabetes & Metabolism, 32(3), 279-284. doi:10.1016/s1262-3636(07)70281-1 | es_ES |
dc.description.references | Guyton, J. R., Foster, R. O., Soeldner, J. S., Tan, M. H., Kahn, C. B., Koncz, L., & Gleason, R. E. (1978). A Model of Glucose-insulin Homeostasis in Man that Incorporates the Heterogeneous Fast Pool Theory of Pancreatic Insulin Release. Diabetes, 27(10), 1027-1042. doi:10.2337/diab.27.10.1027 | es_ES |
dc.description.references | Herman, W. H., & Eastman, R. C. (1998). The Effects of Treatment on the Direct Costs of Diabetes. Diabetes Care, 21(Supplement_3), C19-C24. doi:10.2337/diacare.21.3.c19 | es_ES |
dc.description.references | Herrero, P., J. Vehí, R. Corcoy, A. Chico, B. Pons and A. de Leiva (2008). Model based fault detection in the artificial β-cell framework. In: Eighth Diabetes Technology Meeting. | es_ES |
dc.description.references | Hoshino, M., Haraguchi, Y., Mizushima, I., & Sakai, M. (2009). Recent progress in mechanical artificial pancreas. Journal of Artificial Organs, 12(3), 141-149. doi:10.1007/s10047-009-0463-6 | es_ES |
dc.description.references | Hovorka, R. (2006). Continuous glucose monitoring and closed-loop systems. Diabetic Medicine, 23(1), 1-12. doi:10.1111/j.1464-5491.2005.01672.x | es_ES |
dc.description.references | Hovorka, R. (2008). The Future of Continuous Glucose Monitoring: Closed Loop. Current Diabetes Reviews, 4(3), 269-279. doi:10.2174/157339908785294479 | es_ES |
dc.description.references | Hovorka, R., Shojaee-Moradie, F., Carroll, P. V., Chassin, L. J., Gowrie, I. J., Jackson, N. C., … Jones, R. H. (2002). Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. American Journal of Physiology-Endocrinology and Metabolism, 282(5), E992-E1007. doi:10.1152/ajpendo.00304.2001 | es_ES |
dc.description.references | Hovorka, R., Allen, J. M., Elleri, D., Chassin, L. J., Harris, J., Xing, D., … Dunger, D. B. (2010). Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. The Lancet, 375(9716), 743-751. doi:10.1016/s0140-6736(09)61998-x | es_ES |
dc.description.references | Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Federici, M. O., … Wilinska, M. E. (2004). Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 25(4), 905-920. doi:10.1088/0967-3334/25/4/010 | es_ES |
dc.description.references | Ibbini, M., & Masadeh, M. (2005). A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics. Journal of Medical Engineering & Technology, 29(2), 64-69. doi:10.1080/03091900410001709088 | es_ES |
dc.description.references | JDRF: Artificial Pancreas Project (n.d.).http://jdrf.org. Accessed on March 8 2010. | es_ES |
dc.description.references | Jeitler, K., Horvath, K., Berghold, A., Gratzer, T. W., Neeser, K., Pieber, T. R., & Siebenhofer, A. (2008). Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia, 51(6), 941-951. doi:10.1007/s00125-008-0974-3 | es_ES |
dc.description.references | Jonsson, B. (1998). The Economic Impact of Diabetes. Diabetes Care, 21(Supplement_3), C7-C10. doi:10.2337/diacare.21.3.c7 | es_ES |
dc.description.references | Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes. (2008). New England Journal of Medicine, 359(14), 1464-1476. doi:10.1056/nejmoa0805017 | es_ES |
dc.description.references | Kanderian, S. S., Weinzimer, S., Voskanyan, G., & Steil, G. M. (2009). Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in Individuals with Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(5), 1047-1057. doi:10.1177/193229680900300508 | es_ES |
dc.description.references | Keenan, D. B., Cartaya, R., & Mastrototaro, J. J. (2010). Accuracy of a New Real-Time Continuous Glucose Monitoring Algorithm. Journal of Diabetes Science and Technology, 4(1), 111-118. doi:10.1177/193229681000400114 | es_ES |
dc.description.references | King, C., Anderson, S. M., Breton, M., Clarke, W. L., & Kovatchev, B. P. (2007). Modeling of Calibration Effectiveness and Blood-to-Interstitial Glucose Dynamics as Potential Confounders of the Accuracy of Continuous Glucose Sensors during Hyperinsulinemic Clamp. Journal of Diabetes Science and Technology, 1(3), 317-322. doi:10.1177/193229680700100302 | es_ES |
dc.description.references | Klonoff, D. C., & Schwartz, D. M. (2000). An economic analysis of interventions for diabetes. Diabetes Care, 23(3), 390-404. doi:10.2337/diacare.23.3.390 | es_ES |
dc.description.references | Klonoff, D. C., & Reyes, J. S. (2009). Insulin Pump Safety Meeting: Summary Report. Journal of Diabetes Science and Technology, 3(2), 396-402. doi:10.1177/193229680900300224 | es_ES |
dc.description.references | Kovatchev, B., Anderson, S., Heinemann, L., & Clarke, W. (2008). Comparison of the Numerical and Clinical Accuracy of Four Continuous Glucose Monitors. Diabetes Care, 31(6), 1160-1164. doi:10.2337/dc07-2401 | es_ES |
dc.description.references | Kovatchev, B., Patek, S., Dassau, E., Doyle, F. J., Magni, L., … De Nicolao, G. (2009). Control to Range for Diabetes: Functionality and Modular Architecture. Journal of Diabetes Science and Technology, 3(5), 1058-1065. doi:10.1177/193229680900300509 | es_ES |
dc.description.references | Kovatchev, B. P., Breton, M., Dalla Man, C., & Cobelli, C. (2009). In SilicoPreclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(1), 44-55. doi:10.1177/193229680900300106 | es_ES |
dc.description.references | Kowalski, A. J. (2009). Can We Really Close the Loop and How Soon? Accelerating the Availability of an Artificial Pancreas: A Roadmap to Better Diabetes Outcomes. Diabetes Technology & Therapeutics, 11(S1), S-113-S-119. doi:10.1089/dia.2009.0031 | es_ES |
dc.description.references | Kumareswaran, K., Evans, M. L., & Hovorka, R. (2009). Artificial pancreas: an emerging approach to treat Type 1 diabetes. Expert Review of Medical Devices, 6(4), 401-410. doi:10.1586/erd.09.23 | es_ES |
dc.description.references | Leal, Y., Garcia-Gabin, W., Bondia, J., Esteve, E., Ricart, W., Fernandez-Real, J.-M., & Vehi, J. (2010). Real-Time Glucose Estimation Algorithm for Continuous Glucose Monitoring Using Autoregressive Models. Journal of Diabetes Science and Technology, 4(2), 391-403. doi:10.1177/193229681000400221 | es_ES |
dc.description.references | Lee, H., Buckingham, B. A., Wilson, D. M., & Bequette, B. W. (2009). A Closed-Loop Artificial Pancreas Using Model Predictive Control and a Sliding Meal Size Estimator. Journal of Diabetes Science and Technology, 3(5), 1082-1090. doi:10.1177/193229680900300511 | es_ES |
dc.description.references | Lee, S. and E. Hitt (n.d.). Continuous subcutaneous insulin infusion: Intensive treatment, flexible lifestyle. http://cme.medscape.com/viewarticle/460365. | es_ES |
dc.description.references | Lehmann, E. D., Deutsch, T., Carson, E. R., & Sönksen, P. H. (1994). AIDA: an interactive diabetes advisor. Computer Methods and Programs in Biomedicine, 41(3-4), 183-203. doi:10.1016/0169-2607(94)90054-x | es_ES |
dc.description.references | Magni, L., Raimondo, D. M., Bossi, L., Dalla Man, C., De Nicolao, G., Kovatchev, B., & Cobelli, C. (2007). Model Predictive Control of Type 1 Diabetes: An in Silico Trial. Journal of Diabetes Science and Technology, 1(6), 804-812. doi:10.1177/193229680700100603 | es_ES |
dc.description.references | Mazze, R. S., Strock, E., Borgman, S., Wesley, D., Stout, P., & Racchini, J. (2009). Evaluating the Accuracy, Reliability, and Clinical Applicability of Continuous Glucose Monitoring (CGM): Is CGM Ready for Real Time? Diabetes Technology & Therapeutics, 11(1), 11-18. doi:10.1089/dia.2008.0041 | es_ES |
dc.description.references | McMahon, S. K., Ferreira, L. D., Ratnam, N., Davey, R. J., Youngs, L. M., Davis, E. A., … Jones, T. W. (2007). Glucose Requirements to Maintain Euglycemia after Moderate-Intensity Afternoon Exercise in Adolescents with Type 1 Diabetes Are Increased in a Biphasic Manner. The Journal of Clinical Endocrinology & Metabolism, 92(3), 963-968. doi:10.1210/jc.2006-2263 | es_ES |
dc.description.references | Mecklenburg, R. S., Guinn, T. S., Sannar, C. A., & Blumenstein, B. A. (1986). Malfunction of Continuous Subcutaneous Insulin Infusion Systems: A One-Year Prospective Study of 127 Patients. Diabetes Care, 9(4), 351-355. doi:10.2337/diacare.9.4.351 | es_ES |
dc.description.references | Mendosa, D. (n.d.). Meter memories: how Tom, Dick, and Charlie did it. http://www.mendosa.com/memories.htm. | es_ES |
dc.description.references | Menzin, J., Langley-Hawthorne, C., Friedman, M., Boulanger, L., & Cavanaugh, R. (2001). Potential Short-Term Economic Benefits of Improved Glycemic Control: A managed care perspective. Diabetes Care, 24(1), 51-55. doi:10.2337/diacare.24.1.51 | es_ES |
dc.description.references | Monsod, T. P., Flanagan, D. E., Rife, F., Saenz, R., Caprio, S., Sherwin, R. S., & Tamborlane, W. V. (2002). Do Sensor Glucose Levels Accurately Predict Plasma Glucose Concentrations During Hypoglycemia and Hyperinsulinemia? Diabetes Care, 25(5), 889-893. doi:10.2337/diacare.25.5.889 | es_ES |
dc.description.references | Mudaliar, S. R., Lindberg, F. A., Joyce, M., Beerdsen, P., Strange, P., Lin, A., & Henry, R. R. (1999). Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care, 22(9), 1501-1506. doi:10.2337/diacare.22.9.1501 | es_ES |
dc.description.references | Nilsson, A., Granfeldt, Y., Östman, E., Preston, T., & Björck, I. (2006). Effects of GI and content of indigestible carbohydrates of cereal-based evening meals on glucose tolerance at a subsequent standardised breakfast. European Journal of Clinical Nutrition, 60(9), 1092-1099. doi:10.1038/sj.ejcn.1602423 | es_ES |
dc.description.references | Oliver, N., Georgiou, P., Johnston, D., & Toumazou, C. (2009). A Benchtop Closed-loop System Controlled by a Bio-Inspired Silicon Implementation of the Pancreatic β Cell. Journal of Diabetes Science and Technology, 3(6), 1419-1424. doi:10.1177/193229680900300623 | es_ES |
dc.description.references | Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: a review of current and emerging technology. Diabetic Medicine, 26(3), 197-210. doi:10.1111/j.1464-5491.2008.02642.x | es_ES |
dc.description.references | Omnipod Insulin Pump (n.d.). http://www.myomnipod.com/.Accessed on March 13, 2010. | es_ES |
dc.description.references | Palerm, C. C., Zisser, H., Bevier, W. C., Jovanovic, L., & Doyle, F. J. (2007). Prandial Insulin Dosing Using Run-to-Run Control: Application of clinical data and medical expertise to define a suitable performance metric. Diabetes Care, 30(5), 1131-1136. doi:10.2337/dc06-2115 | es_ES |
dc.description.references | Parker, R. S., Doyle, F. J., & Peppas, N. A. (1999). A model-based algorithm for blood glucose control in Type I diabetic patients. IEEE Transactions on Biomedical Engineering, 46(2), 148-157. doi:10.1109/10.740877 | es_ES |
dc.description.references | Parker, R. S., Doyle, F. J., Ward, J. H., & Peppas, N. A. (2000). RobustH∞ glucose control in diabetes using a physiological model. AIChE Journal, 46(12), 2537-2549. doi:10.1002/aic.690461220 | es_ES |
dc.description.references | Patek, S. D., Bequette, B. W., Breton, M., Buckingham, B. A., Dassau, E., Doyle, F. J., … Zisser, H. (2009). In Silico Preclinical Trials: Methodology and Engineering Guide to Closed-Loop Control in Type 1 Diabetes Mellitus. Journal of Diabetes Science and Technology, 3(2), 269-282. doi:10.1177/193229680900300207 | es_ES |
dc.description.references | Pickup, J., & Keen, H. (2002). Continuous Subcutaneous Insulin Infusion at 25 Years: Evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care, 25(3), 593-598. doi:10.2337/diacare.25.3.593 | es_ES |
dc.description.references | Pinkos, A., Arreaza-Rubin, G., Heetderks, W. J., Irony, I., Joffe, H. V., Schneider, B., & Zimliki, C. L. (2007). FDA’s proactive role in the development of an artificial pancreas for the treatment of diabetes mellitus. Drug Discovery Today: Technologies, 4(1), 25-28. doi:10.1016/j.ddtec.2007.10.007 | es_ES |
dc.description.references | Quesada, I., Tudurí, E., Ripoll, C., & Nadal, Á. (2008). Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. Journal of Endocrinology, 199(1), 5-19. doi:10.1677/joe-08-0290 | es_ES |
dc.description.references | Quiroz, G., & Femat, R. (2010). Theoretical blood glucose control in hyper- and hypoglycemic and exercise scenarios by means of an algorithm. Journal of Theoretical Biology, 263(1), 154-160. doi:10.1016/j.jtbi.2009.11.015 | es_ES |
dc.description.references | Rebrin, K., & Steil, G. M. (2000). Can Interstitial Glucose Assessment Replace Blood Glucose Measurements? Diabetes Technology & Therapeutics, 2(3), 461-472. doi:10.1089/15209150050194332 | es_ES |
dc.description.references | Rebrin, K., Steil, G. M., van Antwerp, W. P., & Mastrototaro, J. J. (1999). Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. American Journal of Physiology-Endocrinology and Metabolism, 277(3), E561-E571. doi:10.1152/ajpendo.1999.277.3.e561 | es_ES |
dc.description.references | Renard, E. (2008). Implantable Continuous Glucose Sensors. Current Diabetes Reviews, 4(3), 169-174. doi:10.2174/157339908785294406 | es_ES |
dc.description.references | Renard, E., Costalat, G., Chevassus, H., & Bringer, J. (2006). Artificial β-cell: clinical experience toward an implantable closed-loop insulin delivery system. Diabetes & Metabolism, 32(5), 497-502. doi:10.1016/s1262-3636(06)72802-6 | es_ES |
dc.description.references | Renard, E., Place, J., Cantwell, M., Chevassus, H., & Palerm, C. C. (2009). Closed-Loop Insulin Delivery Using a Subcutaneous Glucose Sensor and Intraperitoneal Insulin Delivery: Feasibility study testing a new model for the artificial pancreas. Diabetes Care, 33(1), 121-127. doi:10.2337/dc09-1080 | es_ES |
dc.description.references | Renard, E., & Schaepelynck-Bélicar, P. (2007). Implantable insulin pumps. A position statement about their clinical use. Diabetes & Metabolism, 33(2), 158-166. doi:10.1016/j.diabet.2006.10.004 | es_ES |
dc.description.references | Rendell, M. (2008). Insulin: moments in history. Drug Development Research, 69(3), 95-100. doi:10.1002/ddr.20232 | es_ES |
dc.description.references | Roglic, G., & Unwin, N. (2010). Mortality attributable to diabetes: Estimates for the year 2010. Diabetes Research and Clinical Practice, 87(1), 15-19. doi:10.1016/j.diabres.2009.10.006 | es_ES |
dc.description.references | Ruiz-Velázquez, E., Femat, R., & Campos-Delgado, D. U. (2004). Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem. Control Engineering Practice, 12(9), 1179-1195. doi:10.1016/j.conengprac.2003.12.004 | es_ES |
dc.description.references | Schaller, H. C., Schaupp, L., Bodenlenz, M., Wilinska, M. E., Chassin, L. J., Wach, P., … Pieber, T. R. (2006). On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes. Diabetic Medicine, 23(1), 90-93. doi:10.1111/j.1464-5491.2006.01695.x | es_ES |
dc.description.references | Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(1), 4-14. doi:10.1016/j.diabres.2009.10.007 | es_ES |
dc.description.references | Singh-Franco, D., Robles, G., & Gazze, D. (2007). Pramlintide acetate injection for the treatment of type 1 and type 2 diabetes mellitus. Clinical Therapeutics, 29(4), 535-562. doi:10.1016/j.clinthera.2007.04.005 | es_ES |
dc.description.references | Sorensen, J.T. (1985). A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. PhD thesis. Massachusetts Institute of Technology. | es_ES |
dc.description.references | Steil, G. (2004). Closed-loop insulin delivery—the path to physiological glucose control. Advanced Drug Delivery Reviews, 56(2), 125-144. doi:10.1016/j.addr.2003.08.011 | es_ES |
dc.description.references | Steil, G. M., Rebrin, K., Darwin, C., Hariri, F., & Saad, M. F. (2006). Feasibility of Automating Insulin Delivery for the Treatment of Type 1 Diabetes. Diabetes, 55(12), 3344-3350. doi:10.2337/db06-0419 | es_ES |
dc.description.references | Steil, G. M., Rebrin, K., Janowski, R., Darwin, C., & Saad, M. F. (2003). Modeling β-Cell Insulin Secretion - Implications for Closed-Loop Glucose Homeostasis. Diabetes Technology & Therapeutics, 5(6), 953-964. doi:10.1089/152091503322640999 | es_ES |
dc.description.references | Sternberg, F., Meyerhoff, C., Mennel, F. J., Mayer, H., Bischof, F., & Pfeiffer, E. F. (1996). Does fall in tissue glucose precede fall in blood glucose? Diabetologia, 39(5), 609-612. doi:10.1007/bf00403309 | es_ES |
dc.description.references | Trajanoski, Z., & Wach, P. (1998). Neural predictive controller for insulin delivery using the subcutaneous route. IEEE Transactions on Biomedical Engineering, 45(9), 1122-1134. doi:10.1109/10.709556 | es_ES |
dc.description.references | Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). (1998). The Lancet, 352(9131), 837-853. doi:10.1016/s0140-6736(98)07019-6 | es_ES |
dc.description.references | Waldhäusl, W. (1989). Circadian rhythms of insulin needs and actions. Diabetes Research and Clinical Practice, 6(4), S17-S24. doi:10.1016/0168-8227(89)90074-0 | es_ES |
dc.description.references | Wang, J. (2008). Electrochemical Glucose Biosensors. Chemical Reviews, 108(2), 814-825. doi:10.1021/cr068123a | es_ES |
dc.description.references | Wang, Y., Dassau, E., & Doyle, F. J. (2010). Closed-Loop Control of Artificial Pancreatic $\beta$ -Cell in Type 1 Diabetes Mellitus Using Model Predictive Iterative Learning Control. IEEE Transactions on Biomedical Engineering, 57(2), 211-219. doi:10.1109/tbme.2009.2024409 | es_ES |
dc.description.references | Weinstein, R. L., Schwartz, S. L., Brazg, R. L., Bugler, J. R., Peyser, T. A., & McGarraugh, G. V. (2007). Accuracy of the 5-Day FreeStyle Navigator Continuous Glucose Monitoring System: Comparison with frequent laboratory reference measurements. Diabetes Care, 30(5), 1125-1130. doi:10.2337/dc06-1602 | es_ES |
dc.description.references | Weinzimer, S. A., Steil, G. M., Swan, K. L., Dziura, J., Kurtz, N., & Tamborlane, W. V. (2008). Fully Automated Closed-Loop Insulin Delivery Versus Semiautomated Hybrid Control in Pediatric Patients With Type 1 Diabetes Using an Artificial Pancreas. Diabetes Care, 31(5), 934-939. doi:10.2337/dc07-1967 | es_ES |
dc.description.references | Wentholt, I. M., Vollebregt, M. A., Hart, A. A., Hoekstra, J. B., & DeVries, J. H. (2005). Comparison of a Needle-Type and a Microdialysis Continuous Glucose Monitor in Type 1 Diabetic Patients. Diabetes Care, 28(12), 2871-2876. doi:10.2337/diacare.28.12.2871 | es_ES |
dc.description.references | Wilinska, M. E., & Hovorka, R. (2008). Simulation models for in silico testing of closed-loop glucose controllers in type 1 diabetes. Drug Discovery Today: Disease Models, 5(4), 289-298. doi:10.1016/j.ddmod.2009.07.005 | es_ES |
dc.description.references | Wilinska, M. E., Chassin, L. J., Acerini, C. L., Allen, J. M., Dunger, D. B., & Hovorka, R. (2010). Simulation Environment to Evaluate Closed-Loop Insulin Delivery Systems in Type 1 Diabetes. Journal of Diabetes Science and Technology, 4(1), 132-144. doi:10.1177/193229681000400117 | es_ES |
dc.description.references | Wilinska, M. E., Chassin, L. J., Schaller, H. C., Schaupp, L., Pieber, T. R., & Hovorka, R. (2005). Insulin Kinetics in Type-1 Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin. IEEE Transactions on Biomedical Engineering, 52(1), 3-12. doi:10.1109/tbme.2004.839639 | es_ES |
dc.description.references | ZHENG, Y., KREUWEL, H. T. C., YOUNG, D. L., SHODA, L. K. M., RAMANUJAN, S., GADKAR, K. G., … WHITING, C. C. (2007). The Virtual NOD Mouse: Applying Predictive Biosimulation to Research in Type 1 Diabetes. Annals of the New York Academy of Sciences, 1103(1), 45-62. doi:10.1196/annals.1394.014 | es_ES |
dc.description.references | Zisser, H., Palerm, C. C., Bevier, W. C., Doyle, F. J., & Jovanovic, L. (2009). Clinical Update on Optimal Prandial Insulin Dosing Using a Refined Run-to-Run Control Algorithm. Journal of Diabetes Science and Technology, 3(3), 487-491. doi:10.1177/193229680900300312 | es_ES |
dc.description.references | Zisser, H., Robinson, L., Bevier, W., Dassau, E., Ellingsen, C., Doyle, F. J., & Jovanovic, L. (2008). Bolus Calculator: A Review of Four «Smart» Insulin Pumps. Diabetes Technology & Therapeutics, 10(6), 441-444. doi:10.1089/dia.2007.0284 | es_ES |
dc.description.references | Zisser, H. C., Bailey, T. S., Schwartz, S., Ratner, R. E., & Wise, J. (2009). Accuracy of the SEVEN® Continuous Glucose Monitoring System: Comparison with Frequently Sampled Venous Glucose Measurements. Journal of Diabetes Science and Technology, 3(5), 1146-1154. doi:10.1177/193229680900300519 | es_ES |