- -

El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bondía Company, Jorge es_ES
dc.contributor.author Vehí, J. es_ES
dc.contributor.author Palerm, C. C. es_ES
dc.contributor.author Herrero, P. es_ES
dc.date.accessioned 2020-06-02T13:48:01Z
dc.date.available 2020-06-02T13:48:01Z
dc.date.issued 2010-04-09
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144994
dc.description.abstract [ES] La diabetes mellitus tipo 1 es una enfermedad crónica que afecta aproximadamente a 30 millones de personas en el mundo y se caracteriza por niveles de concentración de glucosa en sangre elevados producidos por una deficiencia absoluta de insulina. Ello produce numerosas complicaciones a largo plazo como retinopatía, nefropatía y neuropatía entre otras. Las terapias actuales basadas en el suministro de insulina exógena (por inyecciones o bomba de insulina), no consiguen normalizar los niveles de glucosa de forma eficiente. Los avances tecnológicos en la última década en sistemas de medición continua de glucosa e infusión de insulina, han impulsado el desarrollo del páncreas artificial, o control automático de infusión de insulina. En este trabajo se presentará, a modo de tutorial, el pasado, presente y futuro de esta tecnología, tan esperada por el paciente diabético. Se revisará el estado actual de la tecnología para la sensorización y actuación, principales desafíos desde el punto de vista de control, las diferentes ``escuelas'' y estudios clínicos del desempeño de controladores, así como herramientas de validación de controladores mediante simulación. Dada la complejidad del problema, el desarrollo del páncreas artificial será de forma escalonada, redundando progresivamente en la mejora de la calidad de vida del paciente. Los grandes avances en los últimos cinco años hacen preveer un horizonte cercano para la primera generación de páncreas artificial. es_ES
dc.description.abstract [EN] Type 1 diabetes mellitus is a chronic disease that affects approximately to 30 million people worldwide and is characterized by high blood glucose concentration levels produced by an absolute deficiency of insulin. That produces numerous long-term complications like retinopathy, nephropathy and neuropathy among others. Current therapies based on the exogenous delivery of insulin (through injections or an insulin pump), do not manage to normalize the glucose levels efficiently. Technological advances in the last decade in continuous glucose monitoring and insulin infusion have been a springboard for the development of the artificial pancreas, or automatic control of insulin infusion. In this work, the past, present and future of this technology, so long awaited by the diabetic patient, will be presented in the form of a tutorial. Current technology for sensorization and actuation will be reviewed, as well as main challenges from the control point of view, different “schools of thought” and clinical studies for controllers performance evaluation, and tools for the validation of controllers through simulation. Due to the complexity of the problem, the development of the artificial pancreas will be staggered, resulting progressively in an improvement of the patient’s quality of life. The big advances during last five years foresee a close horizon for a first generation of artificial pancreas. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Ciencia e Innovación español, a través del proyecto DPI2007-66728-C02, de la Unión Europea a través de fondos FEDER y de la Wellcome Trust. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Biomedical systems es_ES
dc.subject Closed-loop control es_ES
dc.subject PID control es_ES
dc.subject Predictive control es_ES
dc.subject Physiological models es_ES
dc.subject Sistemas biomédicos es_ES
dc.subject Control en lazo cerrado es_ES
dc.subject Control PID es_ES
dc.subject Control predictivo es_ES
dc.subject Modelos fisiológicos es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1 es_ES
dc.title.alternative Artificial pancreas: automatic control of insulin infusion in type 1 diabetes mellitus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/S1697-7912(10)70021-2
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2007-66728-C02-02/ES/CONTROL DE GLUCEMIA EN LAZO CERRADO EN PACIENTES CON DIABETES MELLITUS 1 Y PACIENTES CRITICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2007-66728-C02-01/ES/CONTROL DE GLUCEMIA EN LAZO CERRADO EN PACIENTES CON DIABETES MELLITUS 1 Y PACIENTES CRITICOS/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Bondía Company, J.; Vehí, J.; Palerm, CC.; Herrero, P. (2010). El Páncreas Artificial: Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1. Revista Iberoamericana de Automática e Informática industrial. 7(2):5-20. https://doi.org/10.1016/S1697-7912(10)70021-2 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/S1697-7912(10)70021-2 es_ES
dc.description.upvformatpinicio 5 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8476 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Wellcome Trust es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Argoud, G. M., Schade, D. S., & Eaton, R. P. (1987). Insulin Suppresses Its Own Secretion In Vivo. Diabetes, 36(8), 959-962. doi:10.2337/diab.36.8.959 es_ES
dc.description.references Arleth, T., Andreassen, S., Federici, M. O., & Benedetti, M. M. (2000). A model of the endogenous glucose balance incorporating the characteristics of glucose transporters. Computer Methods and Programs in Biomedicine, 62(3), 219-234. doi:10.1016/s0169-2607(00)00069-9 es_ES
dc.description.references Atlas, E., Nimri, R., Miller, S., Grunberg, E. A., & Phillip, M. (2010). MD-Logic Artificial Pancreas System: A pilot study in adults with type 1 diabetes. Diabetes Care, 33(5), 1072-1076. doi:10.2337/dc09-1830 es_ES
dc.description.references Bailey, T., Zisser, H., & Chang, A. (2009). New Features and Performance of a Next-Generation SEVEN-Day Continuous Glucose Monitoring System with Short Lag Time. Diabetes Technology & Therapeutics, 11(12), 749-755. doi:10.1089/dia.2009.0075 es_ES
dc.description.references Basu, R., Di Camillo, B., Toffolo, G., Basu, A., Shah, P., Vella, A., … Cobelli, C. (2003). Use of a novel triple-tracer approach to assess postprandial glucose metabolism. American Journal of Physiology-Endocrinology and Metabolism, 284(1), E55-E69. doi:10.1152/ajpendo.00190.2001 es_ES
dc.description.references Bequette, B. W. (2005). A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas. Diabetes Technology & Therapeutics, 7(1), 28-47. doi:10.1089/dia.2005.7.28 es_ES
dc.description.references Bergman, R. N. (2003). The Minimal Model of Glucose Regulation: A Biography. Mathematical Modeling in Nutrition and the Health Sciences, 1-19. doi:10.1007/978-1-4419-9019-8_1 es_ES
dc.description.references Bevier, W. C., Zisser, H. C., Jovanovič, L., Finan, D. A., Palerm, C. C., Seborg, D. E., & Doyle, F. J. (2008). Use of Continuous Glucose Monitoring to Estimate Insulin Requirements in Patients with Type 1 Diabetes Mellitus during a Short Course of Prednisone. Journal of Diabetes Science and Technology, 2(4), 578-583. doi:10.1177/193229680800200408 es_ES
dc.description.references Bliss, M. (2007). The discovery of insulin. 25th anniversary ed. The University of Chicago Press. es_ES
dc.description.references Bruttomesso, D., Farret, A., Costa, S., Marescotti, M. C., Vettore, M., Avogaro, A., … Maran, A. (2009). Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier. Journal of Diabetes Science and Technology, 3(5), 1014-1021. doi:10.1177/193229680900300504 es_ES
dc.description.references Campos-Delgado, D. U., Hernandez-Ordonez, M., Femat, R., & Gordillo-Moscoso, A. (2006). Fuzzy-Based Controller for Glucose Regulation in Type-1 Diabetic Patients by Subcutaneous Route. IEEE Transactions on Biomedical Engineering, 53(11), 2201-2210. doi:10.1109/tbme.2006.879461 es_ES
dc.description.references Caumo, A., Bergman, R. N., & Cobelli, C. (2000). Insulin Sensitivity from Meal Tolerance Tests in Normal Subjects: A Minimal Model Index. The Journal of Clinical Endocrinology & Metabolism, 85(11), 4396-4402. doi:10.1210/jcem.85.11.6982 es_ES
dc.description.references Chassin, L. J., Wilinska, M. E., & Hovorka, R. (2004). Evaluation of glucose controllers in virtual environment: methodology and sample application. Artificial Intelligence in Medicine, 32(3), 171-181. doi:10.1016/j.artmed.2004.02.006 es_ES
dc.description.references Clarke, W. L., Anderson, S., Farhy, L., Breton, M., Gonder-Frederick, L., Cox, D., & Kovatchev, B. (2005). Evaluating the Clinical Accuracy of Two Continuous Glucose Sensors Using Continuous Glucose-Error Grid Analysis. Diabetes Care, 28(10), 2412-2417. doi:10.2337/diacare.28.10.2412 es_ES
dc.description.references Clarke, W. L., Anderson, S., Breton, M., Patek, S., Kashmer, L., & Kovatchev, B. (2009). Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: The Virginia Experience. Journal of Diabetes Science and Technology, 3(5), 1031-1038. doi:10.1177/193229680900300506 es_ES
dc.description.references Cryer, P. (2002). Hypoglycaemia: The limiting factor in the glycaemic management of Type I and Type II Diabetes*. Diabetologia, 45(7), 937-948. doi:10.1007/s00125-002-0822-9 es_ES
dc.description.references Man, C. D., Camilleri, M., & Cobelli, C. (2006). A System Model of Oral Glucose Absorption: Validation on Gold Standard Data. IEEE Transactions on Biomedical Engineering, 53(12), 2472-2478. doi:10.1109/tbme.2006.883792 es_ES
dc.description.references Dalla Man, C., Breton, M. D., & Cobelli, C. (2009). Physical Activity into the Meal Glucose—Insulin Model of Type 1 Diabetes: In Silico Studies. Journal of Diabetes Science and Technology, 3(1), 56-67. doi:10.1177/193229680900300107 es_ES
dc.description.references Dalla Man, C., Rizza, R. A., & Cobelli, C. (2007). Meal Simulation Model of the Glucose-Insulin System. IEEE Transactions on Biomedical Engineering, 54(10), 1740-1749. doi:10.1109/tbme.2007.893506 es_ES
dc.description.references Dassau, E., Zisser, H., Palerm, C. C., Buckingham, B. A., Jovanovič, L., & Doyle, F. J. (2008). Modular Artificial β-Cell System: A Prototype for Clinical Research. Journal of Diabetes Science and Technology, 2(5), 863-872. doi:10.1177/193229680800200518 es_ES
dc.description.references The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. (1993). New England Journal of Medicine, 329(14), 977-986. doi:10.1056/nejm199309303291401 es_ES
dc.description.references (1997). Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes, 46(2), 271-286. doi:10.2337/diab.46.2.271 es_ES
dc.description.references Doyle, F., Jovanovič, L., & Seborg, D. (2007). I. Glucose control strategies for treating type 1 diabetes mellitus. Journal of Process Control, 17(7), 572-576. doi:10.1016/j.jprocont.2007.01.013 es_ES
dc.description.references Ellingsen, C., Dassau, E., Zisser, H., Grosman, B., Percival, M. W., Jovanovič, L., & Doyle, F. J. (2009). Safety Constraints in an Artificial Pancreatic β Cell: An Implementation of Model Predictive Control with Insulin on Board. Journal of Diabetes Science and Technology, 3(3), 536-544. doi:10.1177/193229680900300319 es_ES
dc.description.references Fabietti, P. G., Calabrese, G., Iorio, M., Bistoni, S., Brunetti, P., Sarti, E., & Benedetti, M. M. (2001). A Mathematical Model Describing the Glycemic Response of Diabetic Patients to Meal and i.v. Infusion of Insulin. The International Journal of Artificial Organs, 24(10), 736-742. doi:10.1177/039139880102401006 es_ES
dc.description.references Fabietti, P. G., Canonico, V., Federici, M. O., Benedetti, M. M., & Sarti, E. (2006). Control oriented model of insulin and glucose dynamics in type 1 diabetics. Medical & Biological Engineering & Computing, 44(1-2), 69-78. doi:10.1007/s11517-005-0012-2 es_ES
dc.description.references Facchinetti, A., Sparacino, G., & Cobelli, C. (2010). Modeling the Error of Continuous Glucose Monitoring Sensor Data: Critical Aspects Discussed through Simulation Studies. Journal of Diabetes Science and Technology, 4(1), 4-14. doi:10.1177/193229681000400102 es_ES
dc.description.references Fatourechi, M. M., Kudva, Y. C., Murad, M. H., Elamin, M. B., Tabini, C. C., & Montori, V. M. (2009). Hypoglycemia with Intensive Insulin Therapy: A Systematic Review and Meta-Analyses of Randomized Trials of Continuous Subcutaneous Insulin Infusion Versus Multiple Daily Injections. The Journal of Clinical Endocrinology & Metabolism, 94(3), 729-740. doi:10.1210/jc.2008-1415 es_ES
dc.description.references FDA (2002). General principles of software validation; final guidance for industry and FDA staff. URL: http://www.fda.gov/cdrh/comp/guidance/938.html. es_ES
dc.description.references FDA: Food & Drug Administration (n.d.). http://fda.gov. Accessed on March 8, 2010. es_ES
dc.description.references FEND and IDF-Europe (2008). Diabetes. The Policy Puzzle: Is Europe Making Progress? 2nd edition. URL: http://www.fend.org/ es_ES
dc.description.references Garcia-Gabin, W., J. Vehi, J. Bondia, C. Tarin and R. Calm (2008). Robust sliding mode closed-loop glucose control with meal compensation in type 1 diabetes mellitus. In: 17th IFAC World Congress. es_ES
dc.description.references Gillis, R., Palerm, C. C., Zisser, H., Jovanovic, L., Seborg, D. E., & Doyle, F. J. (2007). Glucose Estimation and Prediction through Meal Responses Using Ambulatory Subject Data for Advisory Mode Model Predictive Control. Journal of Diabetes Science and Technology, 1(6), 825-833. doi:10.1177/193229680700100605 es_ES
dc.description.references Gin, H., Renard, E., Melki, V., Boivin, S., Schaepelynck-Bélicar, P., Guerci, B., … Catargi, B. (2003). Combined improvements in implantable pump technology and insulin stability allow safe and effective long term intraperitoneal insulin delivery in type 1 diabetic patients: the EVADIAC experience. Diabetes & Metabolism, 29(6), 602-607. doi:10.1016/s1262-3636(07)70075-7 es_ES
dc.description.references Guilhem, I., Leguerrier, A., Lecordier, F., Poirier, J., & Maugendre, D. (2006). Technical risks with subcutaneous insulin infusion. Diabetes & Metabolism, 32(3), 279-284. doi:10.1016/s1262-3636(07)70281-1 es_ES
dc.description.references Guyton, J. R., Foster, R. O., Soeldner, J. S., Tan, M. H., Kahn, C. B., Koncz, L., & Gleason, R. E. (1978). A Model of Glucose-insulin Homeostasis in Man that Incorporates the Heterogeneous Fast Pool Theory of Pancreatic Insulin Release. Diabetes, 27(10), 1027-1042. doi:10.2337/diab.27.10.1027 es_ES
dc.description.references Herman, W. H., & Eastman, R. C. (1998). The Effects of Treatment on the Direct Costs of Diabetes. Diabetes Care, 21(Supplement_3), C19-C24. doi:10.2337/diacare.21.3.c19 es_ES
dc.description.references Herrero, P., J. Vehí, R. Corcoy, A. Chico, B. Pons and A. de Leiva (2008). Model based fault detection in the artificial β-cell framework. In: Eighth Diabetes Technology Meeting. es_ES
dc.description.references Hoshino, M., Haraguchi, Y., Mizushima, I., & Sakai, M. (2009). Recent progress in mechanical artificial pancreas. Journal of Artificial Organs, 12(3), 141-149. doi:10.1007/s10047-009-0463-6 es_ES
dc.description.references Hovorka, R. (2006). Continuous glucose monitoring and closed-loop systems. Diabetic Medicine, 23(1), 1-12. doi:10.1111/j.1464-5491.2005.01672.x es_ES
dc.description.references Hovorka, R. (2008). The Future of Continuous Glucose Monitoring: Closed Loop. Current Diabetes Reviews, 4(3), 269-279. doi:10.2174/157339908785294479 es_ES
dc.description.references Hovorka, R., Shojaee-Moradie, F., Carroll, P. V., Chassin, L. J., Gowrie, I. J., Jackson, N. C., … Jones, R. H. (2002). Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. American Journal of Physiology-Endocrinology and Metabolism, 282(5), E992-E1007. doi:10.1152/ajpendo.00304.2001 es_ES
dc.description.references Hovorka, R., Allen, J. M., Elleri, D., Chassin, L. J., Harris, J., Xing, D., … Dunger, D. B. (2010). Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. The Lancet, 375(9716), 743-751. doi:10.1016/s0140-6736(09)61998-x es_ES
dc.description.references Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Federici, M. O., … Wilinska, M. E. (2004). Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 25(4), 905-920. doi:10.1088/0967-3334/25/4/010 es_ES
dc.description.references Ibbini, M., & Masadeh, M. (2005). A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics. Journal of Medical Engineering & Technology, 29(2), 64-69. doi:10.1080/03091900410001709088 es_ES
dc.description.references JDRF: Artificial Pancreas Project (n.d.).http://jdrf.org. Accessed on March 8 2010. es_ES
dc.description.references Jeitler, K., Horvath, K., Berghold, A., Gratzer, T. W., Neeser, K., Pieber, T. R., & Siebenhofer, A. (2008). Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia, 51(6), 941-951. doi:10.1007/s00125-008-0974-3 es_ES
dc.description.references Jonsson, B. (1998). The Economic Impact of Diabetes. Diabetes Care, 21(Supplement_3), C7-C10. doi:10.2337/diacare.21.3.c7 es_ES
dc.description.references Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes. (2008). New England Journal of Medicine, 359(14), 1464-1476. doi:10.1056/nejmoa0805017 es_ES
dc.description.references Kanderian, S. S., Weinzimer, S., Voskanyan, G., & Steil, G. M. (2009). Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in Individuals with Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(5), 1047-1057. doi:10.1177/193229680900300508 es_ES
dc.description.references Keenan, D. B., Cartaya, R., & Mastrototaro, J. J. (2010). Accuracy of a New Real-Time Continuous Glucose Monitoring Algorithm. Journal of Diabetes Science and Technology, 4(1), 111-118. doi:10.1177/193229681000400114 es_ES
dc.description.references King, C., Anderson, S. M., Breton, M., Clarke, W. L., & Kovatchev, B. P. (2007). Modeling of Calibration Effectiveness and Blood-to-Interstitial Glucose Dynamics as Potential Confounders of the Accuracy of Continuous Glucose Sensors during Hyperinsulinemic Clamp. Journal of Diabetes Science and Technology, 1(3), 317-322. doi:10.1177/193229680700100302 es_ES
dc.description.references Klonoff, D. C., & Schwartz, D. M. (2000). An economic analysis of interventions for diabetes. Diabetes Care, 23(3), 390-404. doi:10.2337/diacare.23.3.390 es_ES
dc.description.references Klonoff, D. C., & Reyes, J. S. (2009). Insulin Pump Safety Meeting: Summary Report. Journal of Diabetes Science and Technology, 3(2), 396-402. doi:10.1177/193229680900300224 es_ES
dc.description.references Kovatchev, B., Anderson, S., Heinemann, L., & Clarke, W. (2008). Comparison of the Numerical and Clinical Accuracy of Four Continuous Glucose Monitors. Diabetes Care, 31(6), 1160-1164. doi:10.2337/dc07-2401 es_ES
dc.description.references Kovatchev, B., Patek, S., Dassau, E., Doyle, F. J., Magni, L., … De Nicolao, G. (2009). Control to Range for Diabetes: Functionality and Modular Architecture. Journal of Diabetes Science and Technology, 3(5), 1058-1065. doi:10.1177/193229680900300509 es_ES
dc.description.references Kovatchev, B. P., Breton, M., Dalla Man, C., & Cobelli, C. (2009). In SilicoPreclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(1), 44-55. doi:10.1177/193229680900300106 es_ES
dc.description.references Kowalski, A. J. (2009). Can We Really Close the Loop and How Soon? Accelerating the Availability of an Artificial Pancreas: A Roadmap to Better Diabetes Outcomes. Diabetes Technology & Therapeutics, 11(S1), S-113-S-119. doi:10.1089/dia.2009.0031 es_ES
dc.description.references Kumareswaran, K., Evans, M. L., & Hovorka, R. (2009). Artificial pancreas: an emerging approach to treat Type 1 diabetes. Expert Review of Medical Devices, 6(4), 401-410. doi:10.1586/erd.09.23 es_ES
dc.description.references Leal, Y., Garcia-Gabin, W., Bondia, J., Esteve, E., Ricart, W., Fernandez-Real, J.-M., & Vehi, J. (2010). Real-Time Glucose Estimation Algorithm for Continuous Glucose Monitoring Using Autoregressive Models. Journal of Diabetes Science and Technology, 4(2), 391-403. doi:10.1177/193229681000400221 es_ES
dc.description.references Lee, H., Buckingham, B. A., Wilson, D. M., & Bequette, B. W. (2009). A Closed-Loop Artificial Pancreas Using Model Predictive Control and a Sliding Meal Size Estimator. Journal of Diabetes Science and Technology, 3(5), 1082-1090. doi:10.1177/193229680900300511 es_ES
dc.description.references Lee, S. and E. Hitt (n.d.). Continuous subcutaneous insulin infusion: Intensive treatment, flexible lifestyle. http://cme.medscape.com/viewarticle/460365. es_ES
dc.description.references Lehmann, E. D., Deutsch, T., Carson, E. R., & Sönksen, P. H. (1994). AIDA: an interactive diabetes advisor. Computer Methods and Programs in Biomedicine, 41(3-4), 183-203. doi:10.1016/0169-2607(94)90054-x es_ES
dc.description.references Magni, L., Raimondo, D. M., Bossi, L., Dalla Man, C., De Nicolao, G., Kovatchev, B., & Cobelli, C. (2007). Model Predictive Control of Type 1 Diabetes: An in Silico Trial. Journal of Diabetes Science and Technology, 1(6), 804-812. doi:10.1177/193229680700100603 es_ES
dc.description.references Mazze, R. S., Strock, E., Borgman, S., Wesley, D., Stout, P., & Racchini, J. (2009). Evaluating the Accuracy, Reliability, and Clinical Applicability of Continuous Glucose Monitoring (CGM): Is CGM Ready for Real Time? Diabetes Technology & Therapeutics, 11(1), 11-18. doi:10.1089/dia.2008.0041 es_ES
dc.description.references McMahon, S. K., Ferreira, L. D., Ratnam, N., Davey, R. J., Youngs, L. M., Davis, E. A., … Jones, T. W. (2007). Glucose Requirements to Maintain Euglycemia after Moderate-Intensity Afternoon Exercise in Adolescents with Type 1 Diabetes Are Increased in a Biphasic Manner. The Journal of Clinical Endocrinology & Metabolism, 92(3), 963-968. doi:10.1210/jc.2006-2263 es_ES
dc.description.references Mecklenburg, R. S., Guinn, T. S., Sannar, C. A., & Blumenstein, B. A. (1986). Malfunction of Continuous Subcutaneous Insulin Infusion Systems: A One-Year Prospective Study of 127 Patients. Diabetes Care, 9(4), 351-355. doi:10.2337/diacare.9.4.351 es_ES
dc.description.references Mendosa, D. (n.d.). Meter memories: how Tom, Dick, and Charlie did it. http://www.mendosa.com/memories.htm. es_ES
dc.description.references Menzin, J., Langley-Hawthorne, C., Friedman, M., Boulanger, L., & Cavanaugh, R. (2001). Potential Short-Term Economic Benefits of Improved Glycemic Control: A managed care perspective. Diabetes Care, 24(1), 51-55. doi:10.2337/diacare.24.1.51 es_ES
dc.description.references Monsod, T. P., Flanagan, D. E., Rife, F., Saenz, R., Caprio, S., Sherwin, R. S., & Tamborlane, W. V. (2002). Do Sensor Glucose Levels Accurately Predict Plasma Glucose Concentrations During Hypoglycemia and Hyperinsulinemia? Diabetes Care, 25(5), 889-893. doi:10.2337/diacare.25.5.889 es_ES
dc.description.references Mudaliar, S. R., Lindberg, F. A., Joyce, M., Beerdsen, P., Strange, P., Lin, A., & Henry, R. R. (1999). Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care, 22(9), 1501-1506. doi:10.2337/diacare.22.9.1501 es_ES
dc.description.references Nilsson, A., Granfeldt, Y., Östman, E., Preston, T., & Björck, I. (2006). Effects of GI and content of indigestible carbohydrates of cereal-based evening meals on glucose tolerance at a subsequent standardised breakfast. European Journal of Clinical Nutrition, 60(9), 1092-1099. doi:10.1038/sj.ejcn.1602423 es_ES
dc.description.references Oliver, N., Georgiou, P., Johnston, D., & Toumazou, C. (2009). A Benchtop Closed-loop System Controlled by a Bio-Inspired Silicon Implementation of the Pancreatic β Cell. Journal of Diabetes Science and Technology, 3(6), 1419-1424. doi:10.1177/193229680900300623 es_ES
dc.description.references Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: a review of current and emerging technology. Diabetic Medicine, 26(3), 197-210. doi:10.1111/j.1464-5491.2008.02642.x es_ES
dc.description.references Omnipod Insulin Pump (n.d.). http://www.myomnipod.com/.Accessed on March 13, 2010. es_ES
dc.description.references Palerm, C. C., Zisser, H., Bevier, W. C., Jovanovic, L., & Doyle, F. J. (2007). Prandial Insulin Dosing Using Run-to-Run Control: Application of clinical data and medical expertise to define a suitable performance metric. Diabetes Care, 30(5), 1131-1136. doi:10.2337/dc06-2115 es_ES
dc.description.references Parker, R. S., Doyle, F. J., & Peppas, N. A. (1999). A model-based algorithm for blood glucose control in Type I diabetic patients. IEEE Transactions on Biomedical Engineering, 46(2), 148-157. doi:10.1109/10.740877 es_ES
dc.description.references Parker, R. S., Doyle, F. J., Ward, J. H., & Peppas, N. A. (2000). RobustH∞ glucose control in diabetes using a physiological model. AIChE Journal, 46(12), 2537-2549. doi:10.1002/aic.690461220 es_ES
dc.description.references Patek, S. D., Bequette, B. W., Breton, M., Buckingham, B. A., Dassau, E., Doyle, F. J., … Zisser, H. (2009). In Silico Preclinical Trials: Methodology and Engineering Guide to Closed-Loop Control in Type 1 Diabetes Mellitus. Journal of Diabetes Science and Technology, 3(2), 269-282. doi:10.1177/193229680900300207 es_ES
dc.description.references Pickup, J., & Keen, H. (2002). Continuous Subcutaneous Insulin Infusion at 25 Years: Evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care, 25(3), 593-598. doi:10.2337/diacare.25.3.593 es_ES
dc.description.references Pinkos, A., Arreaza-Rubin, G., Heetderks, W. J., Irony, I., Joffe, H. V., Schneider, B., & Zimliki, C. L. (2007). FDA’s proactive role in the development of an artificial pancreas for the treatment of diabetes mellitus. Drug Discovery Today: Technologies, 4(1), 25-28. doi:10.1016/j.ddtec.2007.10.007 es_ES
dc.description.references Quesada, I., Tudurí, E., Ripoll, C., & Nadal, Á. (2008). Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. Journal of Endocrinology, 199(1), 5-19. doi:10.1677/joe-08-0290 es_ES
dc.description.references Quiroz, G., & Femat, R. (2010). Theoretical blood glucose control in hyper- and hypoglycemic and exercise scenarios by means of an algorithm. Journal of Theoretical Biology, 263(1), 154-160. doi:10.1016/j.jtbi.2009.11.015 es_ES
dc.description.references Rebrin, K., & Steil, G. M. (2000). Can Interstitial Glucose Assessment Replace Blood Glucose Measurements? Diabetes Technology & Therapeutics, 2(3), 461-472. doi:10.1089/15209150050194332 es_ES
dc.description.references Rebrin, K., Steil, G. M., van Antwerp, W. P., & Mastrototaro, J. J. (1999). Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. American Journal of Physiology-Endocrinology and Metabolism, 277(3), E561-E571. doi:10.1152/ajpendo.1999.277.3.e561 es_ES
dc.description.references Renard, E. (2008). Implantable Continuous Glucose Sensors. Current Diabetes Reviews, 4(3), 169-174. doi:10.2174/157339908785294406 es_ES
dc.description.references Renard, E., Costalat, G., Chevassus, H., & Bringer, J. (2006). Artificial β-cell: clinical experience toward an implantable closed-loop insulin delivery system. Diabetes & Metabolism, 32(5), 497-502. doi:10.1016/s1262-3636(06)72802-6 es_ES
dc.description.references Renard, E., Place, J., Cantwell, M., Chevassus, H., & Palerm, C. C. (2009). Closed-Loop Insulin Delivery Using a Subcutaneous Glucose Sensor and Intraperitoneal Insulin Delivery: Feasibility study testing a new model for the artificial pancreas. Diabetes Care, 33(1), 121-127. doi:10.2337/dc09-1080 es_ES
dc.description.references Renard, E., & Schaepelynck-Bélicar, P. (2007). Implantable insulin pumps. A position statement about their clinical use. Diabetes & Metabolism, 33(2), 158-166. doi:10.1016/j.diabet.2006.10.004 es_ES
dc.description.references Rendell, M. (2008). Insulin: moments in history. Drug Development Research, 69(3), 95-100. doi:10.1002/ddr.20232 es_ES
dc.description.references Roglic, G., & Unwin, N. (2010). Mortality attributable to diabetes: Estimates for the year 2010. Diabetes Research and Clinical Practice, 87(1), 15-19. doi:10.1016/j.diabres.2009.10.006 es_ES
dc.description.references Ruiz-Velázquez, E., Femat, R., & Campos-Delgado, D. U. (2004). Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem. Control Engineering Practice, 12(9), 1179-1195. doi:10.1016/j.conengprac.2003.12.004 es_ES
dc.description.references Schaller, H. C., Schaupp, L., Bodenlenz, M., Wilinska, M. E., Chassin, L. J., Wach, P., … Pieber, T. R. (2006). On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes. Diabetic Medicine, 23(1), 90-93. doi:10.1111/j.1464-5491.2006.01695.x es_ES
dc.description.references Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(1), 4-14. doi:10.1016/j.diabres.2009.10.007 es_ES
dc.description.references Singh-Franco, D., Robles, G., & Gazze, D. (2007). Pramlintide acetate injection for the treatment of type 1 and type 2 diabetes mellitus. Clinical Therapeutics, 29(4), 535-562. doi:10.1016/j.clinthera.2007.04.005 es_ES
dc.description.references Sorensen, J.T. (1985). A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. PhD thesis. Massachusetts Institute of Technology. es_ES
dc.description.references Steil, G. (2004). Closed-loop insulin delivery—the path to physiological glucose control. Advanced Drug Delivery Reviews, 56(2), 125-144. doi:10.1016/j.addr.2003.08.011 es_ES
dc.description.references Steil, G. M., Rebrin, K., Darwin, C., Hariri, F., & Saad, M. F. (2006). Feasibility of Automating Insulin Delivery for the Treatment of Type 1 Diabetes. Diabetes, 55(12), 3344-3350. doi:10.2337/db06-0419 es_ES
dc.description.references Steil, G. M., Rebrin, K., Janowski, R., Darwin, C., & Saad, M. F. (2003). Modeling β-Cell Insulin Secretion - Implications for Closed-Loop Glucose Homeostasis. Diabetes Technology & Therapeutics, 5(6), 953-964. doi:10.1089/152091503322640999 es_ES
dc.description.references Sternberg, F., Meyerhoff, C., Mennel, F. J., Mayer, H., Bischof, F., & Pfeiffer, E. F. (1996). Does fall in tissue glucose precede fall in blood glucose? Diabetologia, 39(5), 609-612. doi:10.1007/bf00403309 es_ES
dc.description.references Trajanoski, Z., & Wach, P. (1998). Neural predictive controller for insulin delivery using the subcutaneous route. IEEE Transactions on Biomedical Engineering, 45(9), 1122-1134. doi:10.1109/10.709556 es_ES
dc.description.references Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). (1998). The Lancet, 352(9131), 837-853. doi:10.1016/s0140-6736(98)07019-6 es_ES
dc.description.references Waldhäusl, W. (1989). Circadian rhythms of insulin needs and actions. Diabetes Research and Clinical Practice, 6(4), S17-S24. doi:10.1016/0168-8227(89)90074-0 es_ES
dc.description.references Wang, J. (2008). Electrochemical Glucose Biosensors. Chemical Reviews, 108(2), 814-825. doi:10.1021/cr068123a es_ES
dc.description.references Wang, Y., Dassau, E., & Doyle, F. J. (2010). Closed-Loop Control of Artificial Pancreatic $\beta$ -Cell in Type 1 Diabetes Mellitus Using Model Predictive Iterative Learning Control. IEEE Transactions on Biomedical Engineering, 57(2), 211-219. doi:10.1109/tbme.2009.2024409 es_ES
dc.description.references Weinstein, R. L., Schwartz, S. L., Brazg, R. L., Bugler, J. R., Peyser, T. A., & McGarraugh, G. V. (2007). Accuracy of the 5-Day FreeStyle Navigator Continuous Glucose Monitoring System: Comparison with frequent laboratory reference measurements. Diabetes Care, 30(5), 1125-1130. doi:10.2337/dc06-1602 es_ES
dc.description.references Weinzimer, S. A., Steil, G. M., Swan, K. L., Dziura, J., Kurtz, N., & Tamborlane, W. V. (2008). Fully Automated Closed-Loop Insulin Delivery Versus Semiautomated Hybrid Control in Pediatric Patients With Type 1 Diabetes Using an Artificial Pancreas. Diabetes Care, 31(5), 934-939. doi:10.2337/dc07-1967 es_ES
dc.description.references Wentholt, I. M., Vollebregt, M. A., Hart, A. A., Hoekstra, J. B., & DeVries, J. H. (2005). Comparison of a Needle-Type and a Microdialysis Continuous Glucose Monitor in Type 1 Diabetic Patients. Diabetes Care, 28(12), 2871-2876. doi:10.2337/diacare.28.12.2871 es_ES
dc.description.references Wilinska, M. E., & Hovorka, R. (2008). Simulation models for in silico testing of closed-loop glucose controllers in type 1 diabetes. Drug Discovery Today: Disease Models, 5(4), 289-298. doi:10.1016/j.ddmod.2009.07.005 es_ES
dc.description.references Wilinska, M. E., Chassin, L. J., Acerini, C. L., Allen, J. M., Dunger, D. B., & Hovorka, R. (2010). Simulation Environment to Evaluate Closed-Loop Insulin Delivery Systems in Type 1 Diabetes. Journal of Diabetes Science and Technology, 4(1), 132-144. doi:10.1177/193229681000400117 es_ES
dc.description.references Wilinska, M. E., Chassin, L. J., Schaller, H. C., Schaupp, L., Pieber, T. R., & Hovorka, R. (2005). Insulin Kinetics in Type-1 Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin. IEEE Transactions on Biomedical Engineering, 52(1), 3-12. doi:10.1109/tbme.2004.839639 es_ES
dc.description.references ZHENG, Y., KREUWEL, H. T. C., YOUNG, D. L., SHODA, L. K. M., RAMANUJAN, S., GADKAR, K. G., … WHITING, C. C. (2007). The Virtual NOD Mouse: Applying Predictive Biosimulation to Research in Type 1 Diabetes. Annals of the New York Academy of Sciences, 1103(1), 45-62. doi:10.1196/annals.1394.014 es_ES
dc.description.references Zisser, H., Palerm, C. C., Bevier, W. C., Doyle, F. J., & Jovanovic, L. (2009). Clinical Update on Optimal Prandial Insulin Dosing Using a Refined Run-to-Run Control Algorithm. Journal of Diabetes Science and Technology, 3(3), 487-491. doi:10.1177/193229680900300312 es_ES
dc.description.references Zisser, H., Robinson, L., Bevier, W., Dassau, E., Ellingsen, C., Doyle, F. J., & Jovanovic, L. (2008). Bolus Calculator: A Review of Four «Smart» Insulin Pumps. Diabetes Technology & Therapeutics, 10(6), 441-444. doi:10.1089/dia.2007.0284 es_ES
dc.description.references Zisser, H. C., Bailey, T. S., Schwartz, S., Ratner, R. E., & Wise, J. (2009). Accuracy of the SEVEN® Continuous Glucose Monitoring System: Comparison with Frequently Sampled Venous Glucose Measurements. Journal of Diabetes Science and Technology, 3(5), 1146-1154. doi:10.1177/193229680900300519 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem