- -

Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rios, Y. es_ES
dc.contributor.author García-Rodríguez, J. es_ES
dc.contributor.author Sánchez, E. es_ES
dc.contributor.author Alanis, A. es_ES
dc.contributor.author Ruiz-Velázquez, E. es_ES
dc.contributor.author Pardo, A. es_ES
dc.date.accessioned 2020-10-05T10:17:06Z
dc.date.available 2020-10-05T10:17:06Z
dc.date.issued 2020-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/151118
dc.description.abstract [ES] La Diabetes Mellitus Tipo 1 (DMT1) es una de las enfermedades actuales más dañinas que afectan a personas de cualquier edad incluyendo niños desde el nacimiento. Las inyecciones de insulina exógena siguen siendo el tratamiento más común para estos pacientes, sin embargo, no es el óptimo. La comunidad científica se ha esforzado en optimizar el suministro de insulina usando dispositivos electrónicos y de esta manera mejorar la esperanza de vida de los diabéticos. Existen numerosas limitaciones para que esta evolución biomédica sea realidad tales como la validación de algoritmos controladores, experimentación con dispositivos electrónicos, aplicabilidad en pacientes de diferentes edades, entre otras. Este trabajo presenta el prototipado de un controlador inteligente neuro-fuzzy en la tarjeta LAUNCHXL-F28069M de Texas Instruments para formar un esquema de hardware en el lazo (HIL). Esto es, el controlador embebido manda los datos de la tasa de suministro de insulina al computador donde se capturan por el software Uva/Padova y se integran a la simulación metabólica de pacientes diabéticos virtuales tratados con bomba de insulina. Una tarea principal del algoritmo inteligente embebido es determinar la tasa óptima de infusión insulínica para cada uno de los 30 pacientes virtuales disponibles, los cuales llevan un protocolo de comida. La novedad de este trabajo se centra en superar las limitaciones actuales a través de un primer enfoque de algoritmo de control inteligente aplicable al páncreas artificial (PA) y analizar la factibilidad de esta propuesta en la trascendencia con la edad ya que los resultados corresponden a pruebas in-silico en poblaciones de 10 adultos, 10 adolescentes y 10 niños. es_ES
dc.description.abstract [EN] Type 1 Diabetes Mellitus (DMT1) is currently one of the most harmful diseases that aect people of any age, including children from birth. Exogenous insulin injections remain the most common treatment for these patients, however, it is not the optimal one. The scientific community has endeavored to optimize insulin administration using electronic devices and thus improve the diabetics life expectancy. There are numerous limitations for this biomedical evolution to become a reality such as the control algorithms validation, experimentation with electronic devices, and applicability in patients age transcendence, among others. This work presents the prototyping of a neuro-fuzzy intelligent controller on the Texas Instruments LAUNCHXL-F28069M development board to form a hardware in the loop (HIL) scheme. That is, the embedded controller sends the insulin delivery rate data to the computer where it is captured by the Uva/Padova software and integrated into the metabolic simulation of virtual diabetic patients treated with an insulin pump. The main task of the embedded intelligent algorithm is to determine the optimal insulin infusion rate for each of the 30 virtual patients who follow a meal protocol. The novelty of this work focuses on overcoming current limitations through a first intelligent control algorithm approach applicable to artificial pancreas (AP) and analyzing the feasibility of this proposal in age transcendence since the results correspond to in-silico tests in populations of 10 adults, 10 adolescents and 10 children. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Type 1 Diabetes Mellitus es_ES
dc.subject Hardware in the loop es_ES
dc.subject Embedded controller es_ES
dc.subject Artificial pancreas es_ES
dc.subject Diabetes Mellitus Tipo 1 es_ES
dc.subject Hardware en el lazo es_ES
dc.subject Controlador embebido es_ES
dc.subject Páncreas artificial es_ES
dc.title Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico es_ES
dc.title.alternative Neuro-fuzzy control for artificial pancreas: in silico development and validation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.13035
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rios, Y.; García-Rodríguez, J.; Sánchez, E.; Alanis, A.; Ruiz-Velázquez, E.; Pardo, A. (2020). Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico. Revista Iberoamericana de Automática e Informática industrial. 17(4):390-400. https://doi.org/10.4995/riai.2020.13035 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.13035 es_ES
dc.description.upvformatpinicio 390 es_ES
dc.description.upvformatpfin 400 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\13035 es_ES
dc.description.references Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., 2007. Discrete-Time Adaptive Backstepping Nonlinear Control via High-Order Neural Networks. IEEE Transactions on Neural Networks 18 (4), 1185-1195. https://doi.org/10.1109/TNN.2007.899170 es_ES
dc.description.references American Diabetes Association, 2013. Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36 (4), 1033-1046. https://doi.org/10.2337/dc12-2625 es_ES
dc.description.references Brown, J. B., Pedula, K. L., Bakst, A. W., 09 1999. The Progressive Cost of Complications in Type 2 Diabetes Mellitus. JAMA Internal Medicine 159 (16), 1873-1880.https://doi.org/10.1001/archinte.159.16.1873 es_ES
dc.description.references Centers for Disease Control and Prevention, 2017. National Diabetes Statistics Report, 2017. Estimates of Diabetes and Its Burden in the United States. National Center for Chronic Disease Prevention and Health Promotion. USA. 1 (1), 1-20. es_ES
dc.description.references Chang, F. J., Chiang, Y. M., Chang, L. C., 2010. Multi-step-ahead neural networks for flood forecasting. Hydrological Sciences Journal 52 (1), 114-130. https://doi.org/10.1623/hysj.52.1.114 es_ES
dc.description.references Chen, P. A., Chang, L. C., Chang, F. J., 2013. Reinforced recurrent neural networks for multi-step-ahead flood forecasts. Journal of Hydrology 497 (2013), 71-79. https://doi.org/10.1016/j.jhydrol.2013.05.038 es_ES
dc.description.references Cinar, A., 2018. Artificial Pancreas Systems: An Introduction to the Special Issue. IEEE Control Systems 38 (1), 26-29. https://doi.org/10.1109/MCS.2017.2766321 es_ES
dc.description.references Control, T. D., Group, C. T. R., 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine 329 (14), 977-986, pMID: 8366922. https://doi.org/10.1056/NEJM199309303291401 es_ES
dc.description.references Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C., jan 2014. The UVA/PADOVA Type 1 Diabetes Simulator. Journal of Diabetes Science and Technology 8 (1), 26-34. https://doi.org/10.1177/1932296813514502 es_ES
dc.description.references Freeman, R. A., Kokotovic, P., 2009. Robust Nonlinear Control Design, springer s Edition. Birkhäuser Boston, Boston. https://doi.org/10.1007/978-0-8176-4759-9 es_ES
dc.description.references Geman, O., Chiuchisan, I., Toderean, R., 2017. Application of adaptive neuro-fuzzy inference system for diabetes classification and prediction. In: 2017 E-Health and Bioengineering Conference (EHB). Sinaia, pp. 639-642. https://doi.org/10.1109/EHB.2017.7995505 es_ES
dc.description.references Institute of Medicine, 2005. Summary Tables, Dietary Reference Intakes. In: Press, T. N. A. (Ed.), Dietary Reference Intakes for Energy, the nation Edition. Elsevier, Washington D.C, U.S., Ch. Summary Ta, pp. 1319-1331. https://doi.org/10.17226/10490 es_ES
dc.description.references Karahoca, A., Karahoca, D., Kara, A., sep 2009. Diagnosis of diabetes by using adaptive neuro fuzzy inference systems. In: 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control. Famagusta, pp. 1-4. https://doi.org/10.1109/ICSCCW.2009.5379497 es_ES
dc.description.references Kim, S., 2007. Burden of hospitalizations primarily due to uncontrolled diabetes. Diabetes Care 30 (5), 1281-1282. http://care.diabetesjournals.org/content/30/5/1281 , https://doi.org/10.2337/dc06-2070 es_ES
dc.description.references Kovatchev, B., Raimondo, D., Breton, M., Patek, S., Cobelli, C., jan 2008. In Silico Testing and in Vivo Experiments with Closed-Loop Control of Blood Glucose in Diabetes. IFAC Proceedings Volumes 41 (2), 4234-4239. https://doi.org/10.3182/20080706-5-KR-1001.00712 es_ES
dc.description.references Kovatchev, B. P., Breton, M., Dalla Man, C., Cobelli, C., 2009. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes. Journal of Diabetes Science and Technology 3 (1), 44-55. https://doi.org/10.1177/193229680900300106 es_ES
dc.description.references Kropff, J., et al., December 2015. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. The Lancet Diabetes & Endocrinology 3 (2), 939-947. https://doi.org/10.1016/S2213-8587(15)00335-6 es_ES
dc.description.references Kux, L., 2012. Guidance for Industry and Food and Drug Administration Staff; The Content of Investigational Device Exemption and Premarket Approval Applications for Artificial Pancreas Device Systems; Availability. Federal Register 77 (226), 1-63. es_ES
dc.description.references Lekkas, S., Mikhailov, L., 2010. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artificial Intelligence in Medicine 50 (2), 117-126. https://doi.org/10.1016/j.artmed.2010.05.007 es_ES
dc.description.references Leon, B. S., Alanis, A. Y., Sanchez, E. N., Ornelas-Tellez, F., Ruiz-Velazquez, E., 2013. Neural inverse optimal control applied to type 1 diabetes mellitus patients. Analog Integrated Circuits and Signal Processing 76 (3), 343-352. https://doi.org/10.1007/s10470-013-0109-8 es_ES
dc.description.references Li, W., Todorov, E., Liu, D., 2011. Inverse optimality design for biological movement systems. In: IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 44. Elsevier, Milano, pp. 9662-9667. https://doi.org/10.3182/20110828-6-IT-1002.00877 es_ES
dc.description.references Nath, A., Dey, R., Balas, V. E., 2018. Closed Loop Blood Glucose Regulation of Type 1 Diabetic Patient Using Takagi-Sugeno Fuzzy Logic Control. In: Advances in Intelligent Systems and Computing. Springer, Cham, Switzerland, pp. 286-296. https://doi.org/10.1007/978-3-319-62524-9_23 es_ES
dc.description.references Ornelas, F., Sanchez, E. N., Loukianov, A. G., 2011. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach. In: Proceedings of the IEEE International Conference on Control Applications. IEEE, Denver, pp. 1431-1436. https://doi.org/10.1109/CCA.2011.6044461 es_ES
dc.description.references Ornelas-Tellez, F., Sanchez, E. N., Loukianov, A. G., Navarro-Lopez, E. M., 2011. Speed-gradient inverse optimal control for discrete-time nonlinear systems. In: Proceedings of the IEEE Conference on Decision and Control. IEEE, Orlando, pp. 290-295. https://doi.org/10.1109/CDC.2011.6160374 es_ES
dc.description.references Pesl, P., Herrero, P., Reddy, M., Xenou, M., Oliver, N., Johnston, D., Toumazou, C., Georgiou, P., Jan 2016. An advanced bolus calculator for type 1 diabetes: System architecture and usability results. IEEE Journal of Biomedical and Health Informatics 20 (1), 11-17. https://doi.org/10.1109/JBHI.2015.2464088 es_ES
dc.description.references Rios, Y. Y., Garcia-Rodriguez, J., Sanchez, E. N., Alanis, A. Y., Ruiz-Velazquez, E., 2018a. Rapid Prototyping of Neuro-Fuzzy Inverse Optimal Control as Applied to T1DM Patients. In: 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE, Guadalajara, pp. 1-5. https://doi.org/10.1109/LA-CCI.2018.8625241 es_ES
dc.description.references Rios, Y. Y., García-Rodríguez, J. A., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., Durán, C., 2018b. Treatment for T1DM patients using neuro-fuzzy inverse optimal control algorithm: a rapid prototyping implementation. In: Revista Colombiana de Tecnologías de Avanzada. Colombia, pp. 26-33. es_ES
dc.description.references Rios, Y. Y., García-Rodríguez, J. A., Sánchez, O. D., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., Arana-Daniel, N., 2018c. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment. In: Proceedings of the International Joint Conference on Neural Networks. Rio de Janeiro, pp. 1-8. https://doi.org/10.1109/IJCNN.2018.8489197 es_ES
dc.description.references Rovithakis, G. A., Christodoulou, M. A., 2000. Adaptive Control with Recurrent High-order Neural Networks : Theory and Industrial Applications. Springer London, London, U.K. https://doi.org/10.1007/978-1-4471-0785-9 es_ES
dc.description.references Sanchez, E. N., Ornelas-Tellez, F., 2013. Discrete-time inverse optimal control for nonlinear systems, taylor & f Edition. CRC Press, Boca Raton, Florida, U.S. https://doi.org/10.1201/b14779 es_ES
dc.description.references Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics SMC-15 (1), 116 - 132. https://doi.org/10.1109/TSMC.1985.6313399 es_ES
dc.description.references Thabit, H., Hovorka, R., Sep. 2016. Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia 59 (9), 1795-1805. https://doi.org/10.1007/s00125-016-4022-4 es_ES
dc.description.references Trevitt, S., Simpson, S., Wood, A., 2016. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology 10 (3), 714-723. https://doi.org/10.1177/1932296815617968 es_ES
dc.description.references Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., Cinar, A., Jan 2016. Meal detection in patients with type 1 diabetes: A new module for the multivariable adaptive artificial pancreas control system. IEEE Journal of Biomedical and Health Informatics 20 (1), 47-54. https://doi.org/10.1109/JBHI.2015.2446413 es_ES
dc.description.references van Bon, A. C., Luijf, Y. M., Koebrugge, R., Koops, R., Hoekstra, J. B. L., DeVries, J. H., 2014. Feasibility of a Portable Bihormonal Closed-Loop System to Control Glucose Excursions at Home Under Free-Living Conditions for 48 Hours. Diabetes Technology & Therapeutics 16 (3), 131-136, pMID: 24224750. https://doi.org/10.1089/dia.2013.0166 es_ES
dc.description.references Yeh, H., et al., 2012. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: A systematic review and meta-analysis. Annals of Internal Medicine 157 (5), 336-347. https://doi.org/10.7326/0003-4819-157-5-201209040-00508 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem