- -

Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico

Mostrar el registro completo del ítem

Rios, Y.; García-Rodríguez, J.; Sánchez, E.; Alanis, A.; Ruiz-Velázquez, E.; Pardo, A. (2020). Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico. Revista Iberoamericana de Automática e Informática industrial. 17(4):390-400. https://doi.org/10.4995/riai.2020.13035

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151118

Ficheros en el ítem

Metadatos del ítem

Título: Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico
Otro titulo: Neuro-fuzzy control for artificial pancreas: in silico development and validation
Autor: Rios, Y. García-Rodríguez, J. Sánchez, E. Alanis, A. Ruiz-Velázquez, E. Pardo, A.
Fecha difusión:
Resumen:
[ES] La Diabetes Mellitus Tipo 1 (DMT1) es una de las enfermedades actuales más dañinas que afectan a personas de cualquier edad incluyendo niños desde el nacimiento. Las inyecciones de insulina exógena siguen siendo el ...[+]


[EN] Type 1 Diabetes Mellitus (DMT1) is currently one of the most harmful diseases that aect people of any age, including children from birth. Exogenous insulin injections remain the most common treatment for these patients, ...[+]
Palabras clave: Type 1 Diabetes Mellitus , Hardware in the loop , Embedded controller , Artificial pancreas , Diabetes Mellitus Tipo 1 , Hardware en el lazo , Controlador embebido , Páncreas artificial
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2020.13035
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2020.13035
Tipo: Artículo

References

Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., 2007. Discrete-Time Adaptive Backstepping Nonlinear Control via High-Order Neural Networks. IEEE Transactions on Neural Networks 18 (4), 1185-1195. https://doi.org/10.1109/TNN.2007.899170

American Diabetes Association, 2013. Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36 (4), 1033-1046. https://doi.org/10.2337/dc12-2625

Brown, J. B., Pedula, K. L., Bakst, A. W., 09 1999. The Progressive Cost of Complications in Type 2 Diabetes Mellitus. JAMA Internal Medicine 159 (16), 1873-1880.https://doi.org/10.1001/archinte.159.16.1873 [+]
Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., 2007. Discrete-Time Adaptive Backstepping Nonlinear Control via High-Order Neural Networks. IEEE Transactions on Neural Networks 18 (4), 1185-1195. https://doi.org/10.1109/TNN.2007.899170

American Diabetes Association, 2013. Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36 (4), 1033-1046. https://doi.org/10.2337/dc12-2625

Brown, J. B., Pedula, K. L., Bakst, A. W., 09 1999. The Progressive Cost of Complications in Type 2 Diabetes Mellitus. JAMA Internal Medicine 159 (16), 1873-1880.https://doi.org/10.1001/archinte.159.16.1873

Centers for Disease Control and Prevention, 2017. National Diabetes Statistics Report, 2017. Estimates of Diabetes and Its Burden in the United States. National Center for Chronic Disease Prevention and Health Promotion. USA. 1 (1), 1-20.

Chang, F. J., Chiang, Y. M., Chang, L. C., 2010. Multi-step-ahead neural networks for flood forecasting. Hydrological Sciences Journal 52 (1), 114-130. https://doi.org/10.1623/hysj.52.1.114

Chen, P. A., Chang, L. C., Chang, F. J., 2013. Reinforced recurrent neural networks for multi-step-ahead flood forecasts. Journal of Hydrology 497 (2013), 71-79. https://doi.org/10.1016/j.jhydrol.2013.05.038

Cinar, A., 2018. Artificial Pancreas Systems: An Introduction to the Special Issue. IEEE Control Systems 38 (1), 26-29. https://doi.org/10.1109/MCS.2017.2766321

Control, T. D., Group, C. T. R., 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine 329 (14), 977-986, pMID: 8366922. https://doi.org/10.1056/NEJM199309303291401

Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C., jan 2014. The UVA/PADOVA Type 1 Diabetes Simulator. Journal of Diabetes Science and Technology 8 (1), 26-34. https://doi.org/10.1177/1932296813514502

Freeman, R. A., Kokotovic, P., 2009. Robust Nonlinear Control Design, springer s Edition. Birkhäuser Boston, Boston. https://doi.org/10.1007/978-0-8176-4759-9

Geman, O., Chiuchisan, I., Toderean, R., 2017. Application of adaptive neuro-fuzzy inference system for diabetes classification and prediction. In: 2017 E-Health and Bioengineering Conference (EHB). Sinaia, pp. 639-642. https://doi.org/10.1109/EHB.2017.7995505

Institute of Medicine, 2005. Summary Tables, Dietary Reference Intakes. In: Press, T. N. A. (Ed.), Dietary Reference Intakes for Energy, the nation Edition. Elsevier, Washington D.C, U.S., Ch. Summary Ta, pp. 1319-1331. https://doi.org/10.17226/10490

Karahoca, A., Karahoca, D., Kara, A., sep 2009. Diagnosis of diabetes by using adaptive neuro fuzzy inference systems. In: 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control. Famagusta, pp. 1-4. https://doi.org/10.1109/ICSCCW.2009.5379497

Kim, S., 2007. Burden of hospitalizations primarily due to uncontrolled diabetes. Diabetes Care 30 (5), 1281-1282. http://care.diabetesjournals.org/content/30/5/1281 , https://doi.org/10.2337/dc06-2070

Kovatchev, B., Raimondo, D., Breton, M., Patek, S., Cobelli, C., jan 2008. In Silico Testing and in Vivo Experiments with Closed-Loop Control of Blood Glucose in Diabetes. IFAC Proceedings Volumes 41 (2), 4234-4239. https://doi.org/10.3182/20080706-5-KR-1001.00712

Kovatchev, B. P., Breton, M., Dalla Man, C., Cobelli, C., 2009. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes. Journal of Diabetes Science and Technology 3 (1), 44-55. https://doi.org/10.1177/193229680900300106

Kropff, J., et al., December 2015. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. The Lancet Diabetes & Endocrinology 3 (2), 939-947. https://doi.org/10.1016/S2213-8587(15)00335-6

Kux, L., 2012. Guidance for Industry and Food and Drug Administration Staff; The Content of Investigational Device Exemption and Premarket Approval Applications for Artificial Pancreas Device Systems; Availability. Federal Register 77 (226), 1-63.

Lekkas, S., Mikhailov, L., 2010. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artificial Intelligence in Medicine 50 (2), 117-126. https://doi.org/10.1016/j.artmed.2010.05.007

Leon, B. S., Alanis, A. Y., Sanchez, E. N., Ornelas-Tellez, F., Ruiz-Velazquez, E., 2013. Neural inverse optimal control applied to type 1 diabetes mellitus patients. Analog Integrated Circuits and Signal Processing 76 (3), 343-352. https://doi.org/10.1007/s10470-013-0109-8

Li, W., Todorov, E., Liu, D., 2011. Inverse optimality design for biological movement systems. In: IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 44. Elsevier, Milano, pp. 9662-9667. https://doi.org/10.3182/20110828-6-IT-1002.00877

Nath, A., Dey, R., Balas, V. E., 2018. Closed Loop Blood Glucose Regulation of Type 1 Diabetic Patient Using Takagi-Sugeno Fuzzy Logic Control. In: Advances in Intelligent Systems and Computing. Springer, Cham, Switzerland, pp. 286-296. https://doi.org/10.1007/978-3-319-62524-9_23

Ornelas, F., Sanchez, E. N., Loukianov, A. G., 2011. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach. In: Proceedings of the IEEE International Conference on Control Applications. IEEE, Denver, pp. 1431-1436. https://doi.org/10.1109/CCA.2011.6044461

Ornelas-Tellez, F., Sanchez, E. N., Loukianov, A. G., Navarro-Lopez, E. M., 2011. Speed-gradient inverse optimal control for discrete-time nonlinear systems. In: Proceedings of the IEEE Conference on Decision and Control. IEEE, Orlando, pp. 290-295. https://doi.org/10.1109/CDC.2011.6160374

Pesl, P., Herrero, P., Reddy, M., Xenou, M., Oliver, N., Johnston, D., Toumazou, C., Georgiou, P., Jan 2016. An advanced bolus calculator for type 1 diabetes: System architecture and usability results. IEEE Journal of Biomedical and Health Informatics 20 (1), 11-17. https://doi.org/10.1109/JBHI.2015.2464088

Rios, Y. Y., Garcia-Rodriguez, J., Sanchez, E. N., Alanis, A. Y., Ruiz-Velazquez, E., 2018a. Rapid Prototyping of Neuro-Fuzzy Inverse Optimal Control as Applied to T1DM Patients. In: 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE, Guadalajara, pp. 1-5. https://doi.org/10.1109/LA-CCI.2018.8625241

Rios, Y. Y., García-Rodríguez, J. A., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., Durán, C., 2018b. Treatment for T1DM patients using neuro-fuzzy inverse optimal control algorithm: a rapid prototyping implementation. In: Revista Colombiana de Tecnologías de Avanzada. Colombia, pp. 26-33.

Rios, Y. Y., García-Rodríguez, J. A., Sánchez, O. D., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., Arana-Daniel, N., 2018c. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment. In: Proceedings of the International Joint Conference on Neural Networks. Rio de Janeiro, pp. 1-8. https://doi.org/10.1109/IJCNN.2018.8489197

Rovithakis, G. A., Christodoulou, M. A., 2000. Adaptive Control with Recurrent High-order Neural Networks : Theory and Industrial Applications. Springer London, London, U.K. https://doi.org/10.1007/978-1-4471-0785-9

Sanchez, E. N., Ornelas-Tellez, F., 2013. Discrete-time inverse optimal control for nonlinear systems, taylor & f Edition. CRC Press, Boca Raton, Florida, U.S. https://doi.org/10.1201/b14779

Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics SMC-15 (1), 116 - 132. https://doi.org/10.1109/TSMC.1985.6313399

Thabit, H., Hovorka, R., Sep. 2016. Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia 59 (9), 1795-1805. https://doi.org/10.1007/s00125-016-4022-4

Trevitt, S., Simpson, S., Wood, A., 2016. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology 10 (3), 714-723. https://doi.org/10.1177/1932296815617968

Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., Cinar, A., Jan 2016. Meal detection in patients with type 1 diabetes: A new module for the multivariable adaptive artificial pancreas control system. IEEE Journal of Biomedical and Health Informatics 20 (1), 47-54. https://doi.org/10.1109/JBHI.2015.2446413

van Bon, A. C., Luijf, Y. M., Koebrugge, R., Koops, R., Hoekstra, J. B. L., DeVries, J. H., 2014. Feasibility of a Portable Bihormonal Closed-Loop System to Control Glucose Excursions at Home Under Free-Living Conditions for 48 Hours. Diabetes Technology & Therapeutics 16 (3), 131-136, pMID: 24224750. https://doi.org/10.1089/dia.2013.0166

Yeh, H., et al., 2012. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: A systematic review and meta-analysis. Annals of Internal Medicine 157 (5), 336-347. https://doi.org/10.7326/0003-4819-157-5-201209040-00508

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem