- -

Modelado y control automático en destilación por membranas solar: fundamentos y propuestas para su desarrollo tecnológico

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado y control automático en destilación por membranas solar: fundamentos y propuestas para su desarrollo tecnológico

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil, J. D. es_ES
dc.contributor.author Roca, L. es_ES
dc.contributor.author Berenguel, M. es_ES
dc.date.accessioned 2020-10-05T10:24:46Z
dc.date.available 2020-10-05T10:24:46Z
dc.date.issued 2020-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/151120
dc.description.abstract [ES] La destilación por membranas es un proceso de separación impulsado térmicamente en fase de investigación. Esta tecnología destaca principalmente por la simplicidad del proceso y su baja temperatura de operación, lo que permite que pueda ser alimentada con energía solar de media-baja temperatura. Así, la destilación por membranas se ha convertido en una solución prometedora, eficiente y sostenible para desarrollar plantas de desalación de pequeño o mediano tamaño en lugares aislados con buenas condiciones de radiación. No obstante, para que esta tecnología pueda llegar a ser implementada a escala industrial se debe seguir investigando y mejorando aspectos relacionados tanto con el diseño de las membranas y de los módulos como con la propia operación de estos. En relación con la operación, el desarrollo de modelos y técnicas de control cobran un papel fundamental. En este trabajo se presenta una revisión de las técnicas de control y modelado aplicadas en este campo, describiendo las principales metodologías empleadas y los retos futuros que quedan por abordar, incluyendo además un ejemplo ilustrativo. es_ES
dc.description.abstract [EN] Membrane distillation is a termally-driven separation process under investigation. This technology stands out for the simplicity of the process and for its low operating temperature, which allows it to be combined with low grade solar energy. Thus, membrane distillation has become a promising, effcient and sustainable solution for the development of small-medium stand-alone desalination facilities to be implemented in offgrids areas with good irradiance conditions. However, in order to develop this technology on an industrial scale, research must continue to improve aspects related to both the design of membranes and modules and their operation. Regarding the operation, the development of models and control techniques play a fundamental role. This paper presents a review of the control and modeling techniques applied in this field, describing the main methodologies employed and the future challenges to be addressed, also including an illustrative example. es_ES
dc.description.sponsorship Este trabajo ha sido financiado con el Proyecto I+D+i del Plan Nacional DPI2017-85007-R del Ministerio de Ciencia, Innovacion y Universidades y Fondos FEDER. Juan D. Gil quiere ´ agradecer al Plan Propio de Investigacion y Transferencia de la ´ Universidad de Almer´ıa por la financiacion de su contrato pre- ´ doctoral. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Modelling es_ES
dc.subject Control es_ES
dc.subject Membrane distillation es_ES
dc.subject Desalination es_ES
dc.subject Solar thermal energy es_ES
dc.subject Modelado es_ES
dc.subject Destilación por membranas es_ES
dc.subject Desalación es_ES
dc.subject Energía solar térmica es_ES
dc.title Modelado y control automático en destilación por membranas solar: fundamentos y propuestas para su desarrollo tecnológico es_ES
dc.title.alternative Modelling and automatic control in solar membrane distillation: Fundamentals and proposals for its technological development es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.13122
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85007-R/ES/CONTROL Y GESTION OPTIMA DE RECURSOS HETEROGENEOS EN DISTRITOS PRODUCTIVOS AGROINDUSTRIALES INTEGRANDO ENERGIAS RENOVABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gil, JD.; Roca, L.; Berenguel, M. (2020). Modelado y control automático en destilación por membranas solar: fundamentos y propuestas para su desarrollo tecnológico. Revista Iberoamericana de Automática e Informática industrial. 17(4):329-343. https://doi.org/10.4995/riai.2020.13122 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.13122 es_ES
dc.description.upvformatpinicio 329 es_ES
dc.description.upvformatpfin 343 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\13122 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad de Almería es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Abdallah, S. B., Frikha, N., Gabsi, S., 2013. Simulation of solar vacuum membrane distillation unit. Desalination 324, 87-92. https://doi.org/10.1016/j.desal.2013.06.001 es_ES
dc.description.references Alkhudhiri, A., Darwish, N., Hilal, N., 2012. Membrane distillation: A com- prehensive review. Desalination 287, 2-18. https://doi.org/10.1016/j.desal.2013.06.001 es_ES
dc.description.references Alsaadi, A. S., Ghaffour, N., Li, J.-D., Gray, S., Francis, L., Maab, H., Amy, G. L., 2013. Modeling of air-gap membrane distillation process: A theoreti- cal and experimental study. Journal of Membrane Science 445, 53-65. https://doi.org/10.1016/j.memsci.2013.05.049 es_ES
dc.description.references Amigo, J., Urtubia, R., Suárez, F., 2018. Exploring the interactions between hydrodynamics and fouling in membrane distillation systems-A multiscale approach using CFD. Desalination 444, 63-74. https://doi.org/10.1016/j.desal.2018.07.009 es_ES
dc.description.references Andrés-Mañas, J., Roca, L., Ruiz-Aguirre, A., Acién, F., Gil, J. D., Zaragoza, G., 2020a. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Applied Energy 258, 114068. https://doi.org/10.1016/j.apenergy.2019.114068 es_ES
dc.description.references Andrés-Mañas, J., Ruiz-Aguirre, A., Acién, F., Zaragoza, G., 2020b. Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination 475, 114202. https://doi.org/10.1016/j.desal.2019.114202 es_ES
dc.description.references Åström, K. J., Hägglund, T., 2006. Advanced PID control. ISA-The Instrumentation, Systems, and Automation Society Research Triangle. es_ES
dc.description.references Banat, F., Jwaied, N., Rommel, M., Koschikowski, J., Wieghaus, M., 2007. Performance evaluation of the "large SMADES" autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination 217 (1-3), 17-28. https://doi.org/10.1016/j.desal.2006.11.027 es_ES
dc.description.references Bendevis, P., Karam, A., Laleg-Kirati, T.-M., 2020. Optimal model-free control of solar thermal membrane distillation system. Computers & Chemical Engineering 133, 106622. https://doi.org/ 10.1016/j.compchemeng.2019.106622 es_ES
dc.description.references Boubakri, A., Hafiane, A., Bouguecha, S. A. T., 2014. Application of response surface methodology for modeling and optimization of membrane distillation desalination process. Journal of Industrial and Engineering Chemistry 20 (5), 3163-3169. https://doi.org/10.1016/j.jiec.2013.11.060 es_ES
dc.description.references Bouguecha, S. T., Boubakri, A., Aly, S. E., Al-Beirutty, M. H., Hamdi, M. M., 2016. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach. Water Science and Technology 74 (1), 87-98. https://doi.org/10.2166/wst.2016.126 es_ES
dc.description.references Camacho, E. F., Berenguel, M., Rubio, F. R., Martínez, D., 2012. Control of Solar Energy Systems. Springer. https://doi.org/10.1007/978-0-85729-916-1 es_ES
dc.description.references Camacho, E. F., Bordons, C., 2004. Model Predictive Control. Springer-Verlag Ltd, London. es_ES
dc.description.references Cao, W., Liu, Q., Wang, Y., Mujtaba, I. M., 2016. Modeling and simulation of VMD desalination process by ANN. Computers & Chemical Engineering 84, 96-103. https://doi.org/10.1016/j.compchemeng.2015.08.019 es_ES
dc.description.references Chafidz, A., Al-Zahrani, S., Al-Otaibi, M. N., Hoong, C. F., Lai, T. F., Prabu, M., 2014. Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination 345, 36-49. https://doi.org/10.1016/j.desal.2014.04.017 es_ES
dc.description.references Chang, H., Wang, G.-B., Chen, Y.-H., Li, C.-C., Chang, C.-L., 2010. Modeling and optimization of a solar driven membrane distillation desalination system. Renewable Energy 35 (12), 2714-2722. https://doi.org/10.1016/j.renene.2010.04.020 es_ES
dc.description.references Chen, Y.-H., Li, Y.-W., Chang, H., 2012. Optimal design and control of solar driven air gap membrane distillation desalination systems. Applied Energy 100, 193-204. https://doi.org/10.1016/j.apenergy.2012.03.003 es_ES
dc.description.references Cheng, D., Li, N., Zhang, J., 2018. Modeling and multi-objective optimization of vacuum membrane distillation for enhancement of water productivity and thermal efficiency in desalination. Chemical Engineering Research and Design 132, 697-713. https://doi.org/10.1016/j.cherd.2018.02.017 es_ES
dc.description.references Cipollina, A., Di Sparti, M., Tamburini, A., Micale, G., 2012. Development of a membrane distillation module for solar energy seawater desalination. Chemical Engineering Research and Design 90 (12), 2101-2121. https://doi.org/10.1016/j.cherd.2012.05.021 es_ES
dc.description.references Demuth, H. B., Beale, M. H., De Jess, O., Hagan, M. T., 2014. Neural network design. PWS Publishing Co. es_ES
dc.description.references DeNicola, E., Aburizaiza, O. S., Siddique, A., Khwaja, H., Carpenter, D. O., 2015. Climate change and water scarcity: The case of Saudi Arabia. Annals of Global Health 81 (3), 342-353. https://doi.org/10.1016/j.aogh.2015.08.005 es_ES
dc.description.references Deshmukh, A., Boo, C., Karanikola, V., Lin, S., Straub, A. P., Tong, T., War- singer, D. M., Elimelech, M., 2018. Membrane distillation at the waterenergy nexus: Limits, opportunities, and challenges. Energy & Environmental Science 11 (5), 1177-1196. https://doi.org/10.1039/c8ee00291f es_ES
dc.description.references Ding, Z., Liu, L., El-Bourawi, M. S., Ma, R., 2005. Analysis of a solar-powered membrane distillation system. Desalination 172 (1), 27-40. https://doi.org/10.1016/j.desal.2004.06.195 es_ES
dc.description.references Dow, N., Duke, M., Zhang, J., O'Rielly, T., Li, J., Gray, S., Ostarcevic, E., Atherton, P., 2010. Demonstration of solar driven membrane distillation in remote Victoria. In: Australian Water Association (AWA) Ozwater Conference and Exhibition, Brisbane, Australia. Vol. 810. es_ES
dc.description.references Duffie, J. A., Beckman, W. A., 2013. Solar engineering of thermal processes. John Wiley & Sons. https://doi.org/10.1002/9781118671603 es_ES
dc.description.references Eleiwi, F., Ghaffour, N., Alsaadi, A. S., Francis, L., Laleg-Kirati, T. M., 2016. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process. Desalination 384, 1-11. https://doi.org/10.1016/j.desal.2016.01.004 es_ES
dc.description.references Elzahaby, A. M., Kabeel, A., Bassuoni, M., Elbar, A. R. A., 2016. Direct contact membrane water distillation assisted with solar energy. Energy Conversion and Management 110, 397-406. https://doi.org/10.1016/j.enconman.2015.12.046 es_ES
dc.description.references Esfandiari, A., Monjezi, A. H., Rezakazemi, M., Younas, M., 2019. Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process. Applied Thermal Engineering 163, 114391. https://doi.org/ 10.1016/j.applthermaleng.2019.114391 es_ES
dc.description.references Fadhil, S., Alsalhy, Q. F., Makki, H. F., Ruby-Figueroa, R., Marino, T., Criscuoli, A., Macedonio, F., Giorno, L., Drioli, E., Figoli, A., 2019. Seawater desalination using PVDF-HFP membrane in DCMD process: Assessment of operating condition by response surface method. Chemical Engineering Communications 206 (2), 237-246. https://doi.org/10.1080/00986445.2018.1483349 es_ES
dc.description.references Gabsi, S., Frikha, N., Chaouachi, B., 2013. Performance of a solar vacuum membrane distillation pilot plant, for seawater desalination in Mahares, Tunisia. International Journal of Water Resources and Arid Environments 2 (4), 213-217. es_ES
dc.description.references Ghaffour, N., Soukane, S., Lee, J.-G., Kim, Y., Alpatova, A., 2019. Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Applied Energy 254, 113698. https://doi.org/10.1016/j.apenergy.2019.113698 es_ES
dc.description.references Gil, J. D., Á lvarez, J., Roca, L., Sánchez-Molina, J., Berenguel, M., Rodríguez, F., 2019a. Optimal thermal energy management of a distributed energy system comprising a solar membrane distillation plant and a greenhouse. Energy Conversion and Management 198, 111791. https://doi.org/10.1016/j.enconman.2019.111791 es_ES
dc.description.references Gil, J. D., Mendes, P. R., Andrade, G., Roca, L., Normey-Rico, J. E., Berenguel, M., 2019b. Hybrid NMPC applied to a solar-powered membrane distillation system. IFAC-PapersOnLine 52 (1), 124 - 129, 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019. https://doi.org/10.1016/j.ifacol.2019.06.048 es_ES
dc.description.references Gil, J. D., Roca, L., Ruiz-Aguirre, A., Zaragoza, G., Berenguel, M., 2018a. Optimal operation of a solar membrane distillation pilot plant via nonlinear model predictive control. Computers & Chemical Engineering 109, 151- 165. https://doi.org/ 10.1016/j.compchemeng.2017.11.012 es_ES
dc.description.references Gil, J. D., Roca, L., Zaragoza, G., Berenguel, M., 2018b. A feedback control system with reference governor for a solar membrane distillation pilot facility. Renewable Energy 120, 536-549. https://doi.org/10.1016/j.renene.2017.12.107 es_ES
dc.description.references Gil, J. D., Ruiz-Aguirre, A., Roca, L., Zaragoza, G., Berenguel, M., 2018c. Pre- diction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants. Desalination 445, 15- 28. https://doi.org/10.1016/j.desal.2018.07.022 es_ES
dc.description.references González, D., Amigo, J., Suárez, F., 2017. Membrane distillation: Perspectives for sustainable and improved desalination. Renewable and Sustainable Energy Reviews 80, 238-259. https://doi.org/10.1016/j.rser.2017.05.078 es_ES
dc.description.references Guillén-Burrieza, E., Alarcón-Padilla, D.-C., Palenzuela, P., Zaragoza, G., 2015. Techno-economic assessment of a pilot-scale plant for solar desalination based on existing plate and frame MD technology. Desalination 374, 70-80. https://doi.org/10.1016/j.desal.2015.07.014 es_ES
dc.description.references Guillén-Burrieza, E., Blanco, J., Zaragoza, G., Alarcón, D.-C., Palenzuela, P., Ibarra, M., Gernjak, W., 2011. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science 379 (1-2), 386-396. https://doi.org/10.1016/j.memsci.2011.06.009 es_ES
dc.description.references Guo, X., Albalawi, F., Laleg-Kirati, T.-M., 2020. Observer-based economic model predictive control for direct contact membrane distillation. Chemical Engineering Research and Design 156, 86-99. https://doi.org/10.1016/j.cherd.2020.01.027 es_ES
dc.description.references Gustafson, R. D., Murphy, J. R., Achilli, A., 2016. A stepwise model of direct contact membrane distillation for application to large-scale systems: Experimental results and model predictions. Desalination 378, 14-27. https://doi.org/0.1016/j.desal.2015.09.022 es_ES
dc.description.references Hayer, H., Bakhtiari, O., Mohammadi, T., 2015. Simulation of momentum, heat and mass transfer in direct contact membrane distillation: A computational fluid dynamics approach. Journal of Industrial and Engineering Chemistry 21, 1379-1382. https://doi.org/10.1016/j.jiec.2014.06.009 es_ES
dc.description.references He, Q., Li, P., Geng, H., Zhang, C., Wang, J., Chang, H., 2014. Modeling and optimization of air gap membrane distillation system for desalination. Desalination 354, 68-75. https://doi.org/10.1016/j.desal.2014.09.022 es_ES
dc.description.references Hill, W. J., Hunter, W. G., 1966. A review of response surface methodology: A literature survey. Technometrics 8 (4), 571-590. https://doi.org/10.2307/1266632 es_ES
dc.description.references Hitsov, I., Eykens, L., De Schepper, W., De Sitter, K., Dotremont, C., Nopens, I., 2017. Full-scale direct contact membrane distillation (DCMD) model including membrane compaction effects. Journal of Membrane Science 524, 245-256. https://doi.org/10.1016/j.memsci.2016.11.044 es_ES
dc.description.references Hitsov, I., Maere, T., De Sitter, K., Dotremont, C., Nopens, I., 2015. Modelling approaches in membrane distillation: A critical review. Separation and Purification Technology 142, 48-64. https://doi.org/10.1016/j.seppur.2014.12.026 es_ES
dc.description.references Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., Kang, S.-m., 2018. The state of desalination and brine production: A global outlook. Science of the Total Environment 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076 es_ES
dc.description.references Karam, A. M., Alsaadi, A. S., Ghaffour, N., Laleg-Kirati, T. M., 2017. Analysis of direct contact membrane distillation based on a lumped-parameter dyna- mic predictive model. Desalination 402, 50-61. https://doi.org/0.1016/j.desal.2016.09.002 es_ES
dc.description.references Karam, A. M., Laleg-Kirati, T. M., 2015. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking. In: 2015 IEEE Conference on Control Applications (CCA). IEEE, pp. 1618-1623. https://doi.org/10.1109/CCA.2015.7320841 es_ES
dc.description.references Karam, A. M., Laleg-Kirati, T. M., 2016. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis. Journal of Process Control 47, 87-97. https://doi.org/10.1016/j.jprocont.2016.08.001 es_ES
dc.description.references Karanikola, V., Corral, A. F., Jiang, H., Saéz, A. E., Ela, W. P., Arnold, R. G., 2015. Sweeping gas membrane distillation: numerical simulation of mass and heat transfer in a hollow fiber membrane module. Journal of Membrane Science 483, 15-24. https://doi.org/10.1016/j.memsci.2015.02.010 es_ES
dc.description.references Khalifa, A. E., Lawal, D. U., 2016. Application of response surface and Taguchi optimization techniques to air gap membrane distillation for water desalination: A comparative study. Desalination and Water Treatment 57 (59), 28513-28530. https://doi.org/0.1080/19443994.2016.1189850 es_ES
dc.description.references Khayet, M., Cojocaru, C., 2012a. Air gap membrane distillation: Desalination, modeling and optimization. Desalination 287, 138-145. https://doi.org/10.1016/j.desal.2011.09.017 es_ES
dc.description.references Khayet, M., Cojocaru, C., 2012b. Artificial neural network modeling and optimization of desalination by air gap membrane distillation. Separation and Purification Technology 86, 171-182. https://doi.org/10.1016/j.seppur.2011.11.001 es_ES
dc.description.references Khayet, M., Cojocaru, C., 2013. Artificial neural network model for desalination by sweeping gas membrane distillation. Desalination 308, 102-110. https://doi.org/10.1016/j.desal.2012.06.023 es_ES
dc.description.references Khayet, M., Cojocaru, C., García-Payo, C., 2007. Application of response sur- face methodology and experimental design in direct contact membrane distillation. Industrial & Engineering Chemistry Research 46 (17), 5673-5685. https://doi.org/10.1021/ie070446p es_ES
dc.description.references Khayet, M., Matsuura, T., 2011. Membrane distillation: Principles and applications. Elsevier. https://doi.org/10.1016/B978-0-444-53126-1.10012-0 es_ES
dc.description.references Kim, Y., Thu, K., Choi, S.-H., 2015. Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit. Desalination 367, 161- 171. https://doi.org/10.1016/j.desal.2015.04.003 es_ES
dc.description.references Koschikowski, J., Wieghaus, M., Rommel, M., Ortin, V. S., Suarez, B. P., Rodríguez, J. R. B., 2009. Experimental investigations on solar driven standalone membrane distillation systems for remote areas. Desalination 248 (1- 3), 125-131. https://doi.org/10.1016/j.desal.2008.05.047 es_ES
dc.description.references Luo, A., Lior, N., 2016. Critical review of membrane distillation performance criteria. Desalination and Water Treatment 57 (43), 20093-20140. https://doi.org/10.1080/19443994.2016.1152637 es_ES
dc.description.references Mercader, P., Cánovas, C., Baños, A., 2019. Control PID multivariable de una caldera de vapor. Revista Iberoamericana de Automática e Informática industrial 16 (1), 15-25. https://doi.org/10.4995/riai.2018.9034 es_ES
dc.description.references Miladi, R., Frikha, N., Kheiri, A., Gabsi, S., 2019. Energetic performance analysis of seawater desalination with a solar membrane distillation. Energy Conversion and Management 185, 143-154. https://doi.org/10.1016/j.enconman.2019.02.011 es_ES
dc.description.references Mohammadi, T., Kazemi, P., Peydayesh, M., 2015. Optimization of vacuum membrane distillation parameters for water desalination using Box- Behnken design. Desalination and Water Treatment 56 (9), 2306-2315. https://doi.org/10.1080/19443994.2014.961173 es_ES
dc.description.references Perfilov, V., Fila, V., Marcano, J. S., 2018. A general predictive model for sweeping gas membrane distillation. Desalination 443, 285-306. https://doi.org/10.1016/j.desal.2018.06.007 es_ES
dc.description.references Porrazzo, R., Cipollina, A., Galluzzo, M., Micale, G., 2013. A neural network- based optimizing control system for a seawater-desalination solar-powered membrane distillation unit. Computers & Chemical Engineering 54, 79-96. https://doi.org/ 10.1016/j.compchemeng.2013.03.015 es_ES
dc.description.references Rodríguez-Blanco, T., Sarabia, D., de Prada, C., 2018. Optimización en tiempo real utilizando la metodología de adaptación de modificadores. Revista Iberoamericana de Automática e Informática industrial 15 (2), 133-144. https://doi.org/10.4995/riai.2017.8846 es_ES
dc.description.references Rubio, F. R., Navas, S. J., Ollero, P., Lemos, J. M., Ortega, M. G., 2018. Control óptimo aplicado a campos de colectores solares distribuidos. Revista Iberoamericana de Automática e Informática industrial 15 (3), 327-338. https://doi.org/10.4995/riai.2018.8944 es_ES
dc.description.references Ruiz-Aguirre, A., Alarcón-Padilla, D.-C., Zaragoza, G., 2015. Productivity analysis of two spiral-wound membrane distillation prototypes coupled with solar energy. Desalination and Water Treatment 55 (10), 2777-2785. https://doi.org/10.1080/19443994.2014.946711 es_ES
dc.description.references Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2017. Modeling and optimization of a commercial permeate gap spiral wound membrane distillation module for seawater desalination. Desalination 419, 160-168. https://doi.org/10.1016/j.desal.2017.06.019 es_ES
dc.description.references Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2018. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology 205, 212-222. https://doi.org/10.1016/j. seppur.2018.05.044 es_ES
dc.description.references Ruiz-Aguirre, A., Andrés-Mañas, J. A., Zaragoza, G., 2019. Evaluation of permeate quality in pilot scale membrane distillation systems. Membranes 9 (6), 69. https://doi.org/10.3390/membranes9060069 es_ES
dc.description.references Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., et al., 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences 111 (9), 3245-3250. https://doi.org/10.1073/pnas.1222460110 es_ES
dc.description.references Shirazian, S., Alibabaei, M., 2017. Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process. Neural Computing and Applications 28 (8), 2099-2104. https://doi.org/10.1007/s00521-016-2184-0 es_ES
dc.description.references Tang, N., Zhang, H., Wang, W., 2011. Computational fluid dynamics numerical simulation of vacuum membrane distillation for aqueous NaCl solution. Desalination 274 (1-3), 120-129. https://doi.org/10.1016/j.desal.2011.01.078 es_ES
dc.description.references Tavakolmoghadam, M., Safavi, M., 2012. An optimized neural network model of desalination by vacuum membrane distillation using genetic algorithm. Procedia Engineering 42, 106-112. https://doi.org/10.1016/j.proeng.2012.07.400 es_ES
dc.description.references Thomas, N., Mavukkandy, M. O., Loutatidou, S., Arafat, H. A., 2017. Mem- brane distillation research & implementation: Lessons from the past five decades. Separation and Purification Technology 189, 108-127. https://doi.org/10.1016/j.seppur.2017.07.069 es_ES
dc.description.references Wang, P., Chung, T.-S., 2015. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science 474, 39-56. https://doi.org/10.1016/j.memsci.2014.09.016 es_ES
dc.description.references WHO, 2011. Guidelines for drinking-water quality. World Health Organization, Chronicle 38 (4), 104-8. es_ES
dc.description.references Winter, D., 2015. Membrane distillation: A thermodynamic, technological and economic analysis. Shaker Verlag. es_ES
dc.description.references Yang, C., Peng, X., Zhao, Y., Wang, X., Fu, J., Liu, K., Li, Y., Li, P., 2020. Prediction model to analyze the performance of VMD desalination process. Computers & Chemical Engineering 132, 106619. https://doi.org/10.1016/j.compchemeng.2019.106619 es_ES
dc.description.references Yu, H., Yang, X., Wang, R., Fane, A. G., 2011. Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane Science 384 (1-2), 107-116. https://doi.org/10.1016/j.memsci.2011.09.011 es_ES
dc.description.references Zaragoza, G., Ruiz-Aguirre, A., Guillén-Burrieza, E., 2014. Efficiency in the use of solar thermal energy of small membrane desalination systems for de- centralized water production. Applied Energy 130, 491-499. https://doi.org/10.1016/j.apenergy.2014.02.024 es_ES
dc.description.references Zhang, L., Xiang, J., Cheng, P. G., Tang, N., Han, H., Yuan, L., Zhang, H., Wang, S., Wang, X., 2015. Three-dimensional numerical simulation of aqueous NaCl solution in vacuum membrane distillation process. Chemical Engineering and Processing: Process Intensification 87, 9-15. https://doi.org/10.1016/j.cep.2014.11.002. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem