Abdallah, S. B., Frikha, N., Gabsi, S., 2013. Simulation of solar vacuum membrane distillation unit. Desalination 324, 87-92. https://doi.org/10.1016/j.desal.2013.06.001
Alkhudhiri, A., Darwish, N., Hilal, N., 2012. Membrane distillation: A com- prehensive review. Desalination 287, 2-18. https://doi.org/10.1016/j.desal.2013.06.001
Alsaadi, A. S., Ghaffour, N., Li, J.-D., Gray, S., Francis, L., Maab, H., Amy, G. L., 2013. Modeling of air-gap membrane distillation process: A theoreti- cal and experimental study. Journal of Membrane Science 445, 53-65. https://doi.org/10.1016/j.memsci.2013.05.049
[+]
Abdallah, S. B., Frikha, N., Gabsi, S., 2013. Simulation of solar vacuum membrane distillation unit. Desalination 324, 87-92. https://doi.org/10.1016/j.desal.2013.06.001
Alkhudhiri, A., Darwish, N., Hilal, N., 2012. Membrane distillation: A com- prehensive review. Desalination 287, 2-18. https://doi.org/10.1016/j.desal.2013.06.001
Alsaadi, A. S., Ghaffour, N., Li, J.-D., Gray, S., Francis, L., Maab, H., Amy, G. L., 2013. Modeling of air-gap membrane distillation process: A theoreti- cal and experimental study. Journal of Membrane Science 445, 53-65. https://doi.org/10.1016/j.memsci.2013.05.049
Amigo, J., Urtubia, R., Suárez, F., 2018. Exploring the interactions between hydrodynamics and fouling in membrane distillation systems-A multiscale approach using CFD. Desalination 444, 63-74. https://doi.org/10.1016/j.desal.2018.07.009
Andrés-Mañas, J., Roca, L., Ruiz-Aguirre, A., Acién, F., Gil, J. D., Zaragoza, G., 2020a. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Applied Energy 258, 114068. https://doi.org/10.1016/j.apenergy.2019.114068
Andrés-Mañas, J., Ruiz-Aguirre, A., Acién, F., Zaragoza, G., 2020b. Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination 475, 114202. https://doi.org/10.1016/j.desal.2019.114202
Åström, K. J., Hägglund, T., 2006. Advanced PID control. ISA-The Instrumentation, Systems, and Automation Society Research Triangle.
Banat, F., Jwaied, N., Rommel, M., Koschikowski, J., Wieghaus, M., 2007. Performance evaluation of the "large SMADES" autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination 217 (1-3), 17-28. https://doi.org/10.1016/j.desal.2006.11.027
Bendevis, P., Karam, A., Laleg-Kirati, T.-M., 2020. Optimal model-free control of solar thermal membrane distillation system. Computers & Chemical Engineering 133, 106622. https://doi.org/ 10.1016/j.compchemeng.2019.106622
Boubakri, A., Hafiane, A., Bouguecha, S. A. T., 2014. Application of response surface methodology for modeling and optimization of membrane distillation desalination process. Journal of Industrial and Engineering Chemistry 20 (5), 3163-3169. https://doi.org/10.1016/j.jiec.2013.11.060
Bouguecha, S. T., Boubakri, A., Aly, S. E., Al-Beirutty, M. H., Hamdi, M. M., 2016. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach. Water Science and Technology 74 (1), 87-98. https://doi.org/10.2166/wst.2016.126
Camacho, E. F., Berenguel, M., Rubio, F. R., Martínez, D., 2012. Control of Solar Energy Systems. Springer. https://doi.org/10.1007/978-0-85729-916-1
Camacho, E. F., Bordons, C., 2004. Model Predictive Control. Springer-Verlag Ltd, London.
Cao, W., Liu, Q., Wang, Y., Mujtaba, I. M., 2016. Modeling and simulation of VMD desalination process by ANN. Computers & Chemical Engineering 84, 96-103. https://doi.org/10.1016/j.compchemeng.2015.08.019
Chafidz, A., Al-Zahrani, S., Al-Otaibi, M. N., Hoong, C. F., Lai, T. F., Prabu, M., 2014. Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination 345, 36-49. https://doi.org/10.1016/j.desal.2014.04.017
Chang, H., Wang, G.-B., Chen, Y.-H., Li, C.-C., Chang, C.-L., 2010. Modeling and optimization of a solar driven membrane distillation desalination system. Renewable Energy 35 (12), 2714-2722. https://doi.org/10.1016/j.renene.2010.04.020
Chen, Y.-H., Li, Y.-W., Chang, H., 2012. Optimal design and control of solar driven air gap membrane distillation desalination systems. Applied Energy 100, 193-204. https://doi.org/10.1016/j.apenergy.2012.03.003
Cheng, D., Li, N., Zhang, J., 2018. Modeling and multi-objective optimization of vacuum membrane distillation for enhancement of water productivity and thermal efficiency in desalination. Chemical Engineering Research and Design 132, 697-713. https://doi.org/10.1016/j.cherd.2018.02.017
Cipollina, A., Di Sparti, M., Tamburini, A., Micale, G., 2012. Development of a membrane distillation module for solar energy seawater desalination. Chemical Engineering Research and Design 90 (12), 2101-2121. https://doi.org/10.1016/j.cherd.2012.05.021
Demuth, H. B., Beale, M. H., De Jess, O., Hagan, M. T., 2014. Neural network design. PWS Publishing Co.
DeNicola, E., Aburizaiza, O. S., Siddique, A., Khwaja, H., Carpenter, D. O., 2015. Climate change and water scarcity: The case of Saudi Arabia. Annals of Global Health 81 (3), 342-353. https://doi.org/10.1016/j.aogh.2015.08.005
Deshmukh, A., Boo, C., Karanikola, V., Lin, S., Straub, A. P., Tong, T., War- singer, D. M., Elimelech, M., 2018. Membrane distillation at the waterenergy nexus: Limits, opportunities, and challenges. Energy & Environmental Science 11 (5), 1177-1196. https://doi.org/10.1039/c8ee00291f
Ding, Z., Liu, L., El-Bourawi, M. S., Ma, R., 2005. Analysis of a solar-powered membrane distillation system. Desalination 172 (1), 27-40. https://doi.org/10.1016/j.desal.2004.06.195
Dow, N., Duke, M., Zhang, J., O'Rielly, T., Li, J., Gray, S., Ostarcevic, E., Atherton, P., 2010. Demonstration of solar driven membrane distillation in remote Victoria. In: Australian Water Association (AWA) Ozwater Conference and Exhibition, Brisbane, Australia. Vol. 810.
Duffie, J. A., Beckman, W. A., 2013. Solar engineering of thermal processes. John Wiley & Sons. https://doi.org/10.1002/9781118671603
Eleiwi, F., Ghaffour, N., Alsaadi, A. S., Francis, L., Laleg-Kirati, T. M., 2016. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process. Desalination 384, 1-11. https://doi.org/10.1016/j.desal.2016.01.004
Elzahaby, A. M., Kabeel, A., Bassuoni, M., Elbar, A. R. A., 2016. Direct contact membrane water distillation assisted with solar energy. Energy Conversion and Management 110, 397-406. https://doi.org/10.1016/j.enconman.2015.12.046
Esfandiari, A., Monjezi, A. H., Rezakazemi, M., Younas, M., 2019. Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process. Applied Thermal Engineering 163, 114391. https://doi.org/ 10.1016/j.applthermaleng.2019.114391
Fadhil, S., Alsalhy, Q. F., Makki, H. F., Ruby-Figueroa, R., Marino, T., Criscuoli, A., Macedonio, F., Giorno, L., Drioli, E., Figoli, A., 2019. Seawater desalination using PVDF-HFP membrane in DCMD process: Assessment of operating condition by response surface method. Chemical Engineering Communications 206 (2), 237-246. https://doi.org/10.1080/00986445.2018.1483349
Gabsi, S., Frikha, N., Chaouachi, B., 2013. Performance of a solar vacuum membrane distillation pilot plant, for seawater desalination in Mahares, Tunisia. International Journal of Water Resources and Arid Environments 2 (4), 213-217.
Ghaffour, N., Soukane, S., Lee, J.-G., Kim, Y., Alpatova, A., 2019. Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Applied Energy 254, 113698. https://doi.org/10.1016/j.apenergy.2019.113698
Gil, J. D., Á lvarez, J., Roca, L., Sánchez-Molina, J., Berenguel, M., Rodríguez, F., 2019a. Optimal thermal energy management of a distributed energy system comprising a solar membrane distillation plant and a greenhouse. Energy Conversion and Management 198, 111791. https://doi.org/10.1016/j.enconman.2019.111791
Gil, J. D., Mendes, P. R., Andrade, G., Roca, L., Normey-Rico, J. E., Berenguel, M., 2019b. Hybrid NMPC applied to a solar-powered membrane distillation system. IFAC-PapersOnLine 52 (1), 124 - 129, 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019. https://doi.org/10.1016/j.ifacol.2019.06.048
Gil, J. D., Roca, L., Ruiz-Aguirre, A., Zaragoza, G., Berenguel, M., 2018a. Optimal operation of a solar membrane distillation pilot plant via nonlinear model predictive control. Computers & Chemical Engineering 109, 151- 165. https://doi.org/ 10.1016/j.compchemeng.2017.11.012
Gil, J. D., Roca, L., Zaragoza, G., Berenguel, M., 2018b. A feedback control system with reference governor for a solar membrane distillation pilot facility. Renewable Energy 120, 536-549. https://doi.org/10.1016/j.renene.2017.12.107
Gil, J. D., Ruiz-Aguirre, A., Roca, L., Zaragoza, G., Berenguel, M., 2018c. Pre- diction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants. Desalination 445, 15- 28. https://doi.org/10.1016/j.desal.2018.07.022
González, D., Amigo, J., Suárez, F., 2017. Membrane distillation: Perspectives for sustainable and improved desalination. Renewable and Sustainable Energy Reviews 80, 238-259. https://doi.org/10.1016/j.rser.2017.05.078
Guillén-Burrieza, E., Alarcón-Padilla, D.-C., Palenzuela, P., Zaragoza, G., 2015. Techno-economic assessment of a pilot-scale plant for solar desalination based on existing plate and frame MD technology. Desalination 374, 70-80. https://doi.org/10.1016/j.desal.2015.07.014
Guillén-Burrieza, E., Blanco, J., Zaragoza, G., Alarcón, D.-C., Palenzuela, P., Ibarra, M., Gernjak, W., 2011. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science 379 (1-2), 386-396. https://doi.org/10.1016/j.memsci.2011.06.009
Guo, X., Albalawi, F., Laleg-Kirati, T.-M., 2020. Observer-based economic model predictive control for direct contact membrane distillation. Chemical Engineering Research and Design 156, 86-99. https://doi.org/10.1016/j.cherd.2020.01.027
Gustafson, R. D., Murphy, J. R., Achilli, A., 2016. A stepwise model of direct contact membrane distillation for application to large-scale systems: Experimental results and model predictions. Desalination 378, 14-27. https://doi.org/0.1016/j.desal.2015.09.022
Hayer, H., Bakhtiari, O., Mohammadi, T., 2015. Simulation of momentum, heat and mass transfer in direct contact membrane distillation: A computational fluid dynamics approach. Journal of Industrial and Engineering Chemistry 21, 1379-1382. https://doi.org/10.1016/j.jiec.2014.06.009
He, Q., Li, P., Geng, H., Zhang, C., Wang, J., Chang, H., 2014. Modeling and optimization of air gap membrane distillation system for desalination. Desalination 354, 68-75. https://doi.org/10.1016/j.desal.2014.09.022
Hill, W. J., Hunter, W. G., 1966. A review of response surface methodology: A literature survey. Technometrics 8 (4), 571-590. https://doi.org/10.2307/1266632
Hitsov, I., Eykens, L., De Schepper, W., De Sitter, K., Dotremont, C., Nopens, I., 2017. Full-scale direct contact membrane distillation (DCMD) model including membrane compaction effects. Journal of Membrane Science 524, 245-256. https://doi.org/10.1016/j.memsci.2016.11.044
Hitsov, I., Maere, T., De Sitter, K., Dotremont, C., Nopens, I., 2015. Modelling approaches in membrane distillation: A critical review. Separation and Purification Technology 142, 48-64. https://doi.org/10.1016/j.seppur.2014.12.026
Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., Kang, S.-m., 2018. The state of desalination and brine production: A global outlook. Science of the Total Environment 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
Karam, A. M., Alsaadi, A. S., Ghaffour, N., Laleg-Kirati, T. M., 2017. Analysis of direct contact membrane distillation based on a lumped-parameter dyna- mic predictive model. Desalination 402, 50-61. https://doi.org/0.1016/j.desal.2016.09.002
Karam, A. M., Laleg-Kirati, T. M., 2015. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking. In: 2015 IEEE Conference on Control Applications (CCA). IEEE, pp. 1618-1623. https://doi.org/10.1109/CCA.2015.7320841
Karam, A. M., Laleg-Kirati, T. M., 2016. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis. Journal of Process Control 47, 87-97. https://doi.org/10.1016/j.jprocont.2016.08.001
Karanikola, V., Corral, A. F., Jiang, H., Saéz, A. E., Ela, W. P., Arnold, R. G., 2015. Sweeping gas membrane distillation: numerical simulation of mass and heat transfer in a hollow fiber membrane module. Journal of Membrane Science 483, 15-24. https://doi.org/10.1016/j.memsci.2015.02.010
Khalifa, A. E., Lawal, D. U., 2016. Application of response surface and Taguchi optimization techniques to air gap membrane distillation for water desalination: A comparative study. Desalination and Water Treatment 57 (59), 28513-28530. https://doi.org/0.1080/19443994.2016.1189850
Khayet, M., Cojocaru, C., 2012a. Air gap membrane distillation: Desalination, modeling and optimization. Desalination 287, 138-145. https://doi.org/10.1016/j.desal.2011.09.017
Khayet, M., Cojocaru, C., 2012b. Artificial neural network modeling and optimization of desalination by air gap membrane distillation. Separation and Purification Technology 86, 171-182. https://doi.org/10.1016/j.seppur.2011.11.001
Khayet, M., Cojocaru, C., 2013. Artificial neural network model for desalination by sweeping gas membrane distillation. Desalination 308, 102-110. https://doi.org/10.1016/j.desal.2012.06.023
Khayet, M., Cojocaru, C., García-Payo, C., 2007. Application of response sur- face methodology and experimental design in direct contact membrane distillation. Industrial & Engineering Chemistry Research 46 (17), 5673-5685. https://doi.org/10.1021/ie070446p
Khayet, M., Matsuura, T., 2011. Membrane distillation: Principles and applications. Elsevier. https://doi.org/10.1016/B978-0-444-53126-1.10012-0
Kim, Y., Thu, K., Choi, S.-H., 2015. Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit. Desalination 367, 161- 171. https://doi.org/10.1016/j.desal.2015.04.003
Koschikowski, J., Wieghaus, M., Rommel, M., Ortin, V. S., Suarez, B. P., Rodríguez, J. R. B., 2009. Experimental investigations on solar driven standalone membrane distillation systems for remote areas. Desalination 248 (1- 3), 125-131. https://doi.org/10.1016/j.desal.2008.05.047
Luo, A., Lior, N., 2016. Critical review of membrane distillation performance criteria. Desalination and Water Treatment 57 (43), 20093-20140. https://doi.org/10.1080/19443994.2016.1152637
Mercader, P., Cánovas, C., Baños, A., 2019. Control PID multivariable de una caldera de vapor. Revista Iberoamericana de Automática e Informática industrial 16 (1), 15-25. https://doi.org/10.4995/riai.2018.9034
Miladi, R., Frikha, N., Kheiri, A., Gabsi, S., 2019. Energetic performance analysis of seawater desalination with a solar membrane distillation. Energy Conversion and Management 185, 143-154. https://doi.org/10.1016/j.enconman.2019.02.011
Mohammadi, T., Kazemi, P., Peydayesh, M., 2015. Optimization of vacuum membrane distillation parameters for water desalination using Box- Behnken design. Desalination and Water Treatment 56 (9), 2306-2315. https://doi.org/10.1080/19443994.2014.961173
Perfilov, V., Fila, V., Marcano, J. S., 2018. A general predictive model for sweeping gas membrane distillation. Desalination 443, 285-306. https://doi.org/10.1016/j.desal.2018.06.007
Porrazzo, R., Cipollina, A., Galluzzo, M., Micale, G., 2013. A neural network- based optimizing control system for a seawater-desalination solar-powered membrane distillation unit. Computers & Chemical Engineering 54, 79-96. https://doi.org/ 10.1016/j.compchemeng.2013.03.015
Rodríguez-Blanco, T., Sarabia, D., de Prada, C., 2018. Optimización en tiempo real utilizando la metodología de adaptación de modificadores. Revista Iberoamericana de Automática e Informática industrial 15 (2), 133-144. https://doi.org/10.4995/riai.2017.8846
Rubio, F. R., Navas, S. J., Ollero, P., Lemos, J. M., Ortega, M. G., 2018. Control óptimo aplicado a campos de colectores solares distribuidos. Revista Iberoamericana de Automática e Informática industrial 15 (3), 327-338. https://doi.org/10.4995/riai.2018.8944
Ruiz-Aguirre, A., Alarcón-Padilla, D.-C., Zaragoza, G., 2015. Productivity analysis of two spiral-wound membrane distillation prototypes coupled with solar energy. Desalination and Water Treatment 55 (10), 2777-2785. https://doi.org/10.1080/19443994.2014.946711
Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2017. Modeling and optimization of a commercial permeate gap spiral wound membrane distillation module for seawater desalination. Desalination 419, 160-168. https://doi.org/10.1016/j.desal.2017.06.019
Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2018. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology 205, 212-222. https://doi.org/10.1016/j. seppur.2018.05.044
Ruiz-Aguirre, A., Andrés-Mañas, J. A., Zaragoza, G., 2019. Evaluation of permeate quality in pilot scale membrane distillation systems. Membranes 9 (6), 69. https://doi.org/10.3390/membranes9060069
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., et al., 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences 111 (9), 3245-3250. https://doi.org/10.1073/pnas.1222460110
Shirazian, S., Alibabaei, M., 2017. Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process. Neural Computing and Applications 28 (8), 2099-2104. https://doi.org/10.1007/s00521-016-2184-0
Tang, N., Zhang, H., Wang, W., 2011. Computational fluid dynamics numerical simulation of vacuum membrane distillation for aqueous NaCl solution. Desalination 274 (1-3), 120-129. https://doi.org/10.1016/j.desal.2011.01.078
Tavakolmoghadam, M., Safavi, M., 2012. An optimized neural network model of desalination by vacuum membrane distillation using genetic algorithm. Procedia Engineering 42, 106-112. https://doi.org/10.1016/j.proeng.2012.07.400
Thomas, N., Mavukkandy, M. O., Loutatidou, S., Arafat, H. A., 2017. Mem- brane distillation research & implementation: Lessons from the past five decades. Separation and Purification Technology 189, 108-127. https://doi.org/10.1016/j.seppur.2017.07.069
Wang, P., Chung, T.-S., 2015. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science 474, 39-56. https://doi.org/10.1016/j.memsci.2014.09.016
WHO, 2011. Guidelines for drinking-water quality. World Health Organization, Chronicle 38 (4), 104-8.
Winter, D., 2015. Membrane distillation: A thermodynamic, technological and economic analysis. Shaker Verlag.
Yang, C., Peng, X., Zhao, Y., Wang, X., Fu, J., Liu, K., Li, Y., Li, P., 2020. Prediction model to analyze the performance of VMD desalination process. Computers & Chemical Engineering 132, 106619. https://doi.org/10.1016/j.compchemeng.2019.106619
Yu, H., Yang, X., Wang, R., Fane, A. G., 2011. Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane Science 384 (1-2), 107-116. https://doi.org/10.1016/j.memsci.2011.09.011
Zaragoza, G., Ruiz-Aguirre, A., Guillén-Burrieza, E., 2014. Efficiency in the use of solar thermal energy of small membrane desalination systems for de- centralized water production. Applied Energy 130, 491-499. https://doi.org/10.1016/j.apenergy.2014.02.024
Zhang, L., Xiang, J., Cheng, P. G., Tang, N., Han, H., Yuan, L., Zhang, H., Wang, S., Wang, X., 2015. Three-dimensional numerical simulation of aqueous NaCl solution in vacuum membrane distillation process. Chemical Engineering and Processing: Process Intensification 87, 9-15. https://doi.org/10.1016/j.cep.2014.11.002.
[-]