- -

Mixed Bruce-Roberts numbers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mixed Bruce-Roberts numbers

Mostrar el registro completo del ítem

Bivià-Ausina, C.; Ruas, M. (2020). Mixed Bruce-Roberts numbers. Proceedings of the Edinburgh Mathematical Society. 63(2):456-474. https://doi.org/10.1017/S0013091519000543

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151441

Ficheros en el ítem

Metadatos del ítem

Título: Mixed Bruce-Roberts numbers
Autor: Bivià-Ausina, Carles Ruas, M.A.S.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We extend the notions of mu*- sequences and Tjurina numbers of functions to the framework of Bruce-Roberts numbers, that is, to pairs formed by the germ at 0 of a complex analytic variety X. Cn and a finitely R( ...[+]
Palabras clave: Milnor number , Logarithmic vector field , Tjurina number , Finite determinacy
Derechos de uso: Reserva de todos los derechos
Fuente:
Proceedings of the Edinburgh Mathematical Society. (issn: 0013-0915 )
DOI: 10.1017/S0013091519000543
Editorial:
Cambridge University Press
Versión del editor: https://doi.org/10.1017/S0013091519000543
Código del Proyecto:
info:eu-repo/grantAgreement/FAPESP//2014%2F00304-2/
info:eu-repo/grantAgreement/CNPq//306306%2F2015-8/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094889-B-I00/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/
Agradecimientos:
Part of this work was developed during the stay of the first author at the Departamento de Matematica of ICMC, Sao Carlos, Universidade de Sao Paulo (Brazil), in February and July 2018. The first author wishes to thank ...[+]
Tipo: Artículo

References

Damon, J. (1996). Higher multiplicities and almost free divisors and complete intersections. Memoirs of the American Mathematical Society, 123(589), 0-0. doi:10.1090/memo/0589

Wahl, J. M. (1983). Derivations, automorphisms and deformations of quasihomogeneous singularities. Proceedings of Symposia in Pure Mathematics, 613-624. doi:10.1090/pspum/040.2/713285

De Goes Grulha, N. (2008). THE EULER OBSTRUCTION AND BRUCE-ROBERTS’ MILNOR NUMBER. The Quarterly Journal of Mathematics, 60(3), 291-302. doi:10.1093/qmath/han011 [+]
Damon, J. (1996). Higher multiplicities and almost free divisors and complete intersections. Memoirs of the American Mathematical Society, 123(589), 0-0. doi:10.1090/memo/0589

Wahl, J. M. (1983). Derivations, automorphisms and deformations of quasihomogeneous singularities. Proceedings of Symposia in Pure Mathematics, 613-624. doi:10.1090/pspum/040.2/713285

De Goes Grulha, N. (2008). THE EULER OBSTRUCTION AND BRUCE-ROBERTS’ MILNOR NUMBER. The Quarterly Journal of Mathematics, 60(3), 291-302. doi:10.1093/qmath/han011

Greuel, G.-M. (1975). Der Gau�-Manin-Zusammenhang isolierter Singularit�ten von vollst�ndigen Durchschnitten. Mathematische Annalen, 214(3), 235-266. doi:10.1007/bf01352108

Gaffney, T. (1996). Multiplicities and equisingularity of ICIS germs. Inventiones Mathematicae, 123(1), 209-220. doi:10.1007/bf01232372

Damon, J. (2002). On the freeness of equisingular deformations of plane curve singularities. Topology and its Applications, 118(1-2), 31-43. doi:10.1016/s0166-8641(01)00040-2

Bruce, J. W., & Roberts, R. M. (1988). Critical points of functions on analytic varieties. Topology, 27(1), 57-90. doi:10.1016/0040-9383(88)90007-9

Decker, W. , Greuel, G.-M. , Pfister, G. and Schönemann, H. , Singular 4-0-2. A computer algebra system for polynomial computations. Available at http://www.singular.uni-kl.de (2015).

Looijenga, E. J. N. (1984). Isolated Singular Points on Complete Intersections. doi:10.1017/cbo9780511662720

AHMED, I., RUAS, M. A. S., & TOMAZELLA, J. N. (2013). Invariants of topological relative right equivalences. Mathematical Proceedings of the Cambridge Philosophical Society, 155(2), 307-315. doi:10.1017/s0305004113000297

Aleksandrov, A. G. (1986). COHOMOLOGY OF A QUASIHOMOGENEOUS COMPLETE INTERSECTION. Mathematics of the USSR-Izvestiya, 26(3), 437-477. doi:10.1070/im1986v026n03abeh001155

Briançon, J., & Maynadier-Gervais, H. (2002). Sur le nombre de Milnor d’une singularité semi-quasi-homogène. Comptes Rendus Mathematique, 334(4), 317-320. doi:10.1016/s1631-073x(02)02256-2

Giusti, M., & Henry, J.-P.-G. (1980). Minorations de nombres de Milnor. Bulletin de la Société mathématique de France, 79, 17-45. doi:10.24033/bsmf.1907

Hauser, H., & Müller, G. (1993). Affine varieties and lie algebras of vector fields. Manuscripta Mathematica, 80(1), 309-337. doi:10.1007/bf03026556

Liu, Y. (2018). Milnor and Tjurina numbers for a hypersurface germ with isolated singularity. Comptes Rendus Mathematique, 356(9), 963-966. doi:10.1016/j.crma.2018.07.004

Nuno-Ballesteros, J. J., Orefice, B., & Tomazella, J. N. (2011). THE BRUCE-ROBERTS NUMBER OF A FUNCTION ON A WEIGHTED HOMOGENEOUS HYPERSURFACE. The Quarterly Journal of Mathematics, 64(1), 269-280. doi:10.1093/qmath/har032

Ohmoto, T., Suwa, T., & Yokura, S. (1997). A remark on the Chern classes of local complete intersections. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 73(5), 93-95. doi:10.3792/pjaa.73.93

Lê Tráng, D. (1974). Calculation of Milnor number of isolated singularity of complete intersection. Functional Analysis and Its Applications, 8(2), 127-131. doi:10.1007/bf01078597

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem