- -

Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boruntea, Cristian-R. es_ES
dc.contributor.author Lundegaard, Lars F. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Vennestrom, Peter N. R. es_ES
dc.date.accessioned 2021-01-20T04:32:04Z
dc.date.available 2021-01-20T04:32:04Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 1387-1811 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159526
dc.description.abstract [EN] The OH-/T-atom ratio and the Al-source are identified as critical parameters for the successful crystallization of AEI and AFX type zeolites when sufficient organic structure directing agent (OSDA) molecules are present. Especially the use of a zeolite as the Al-source is essential. When a complete zeolite-to-zeolite transformation of FAU is explored it is found to proceed without any solid crystalline intermediates. The optimal OH-/T-atom ratio can also be decreased when the Al-content in the reactant zeolite is increased to resemble the product composition better. This makes higher yields and better utilization of the OSDA possible compared to gels with less Al. During successful zeolite transformations the lattice parameter of FAU, which is proportional to the Alcontent, seems to converge at a certain range before the onset of product crystallization. This indicates that successful nucleation and/or formation of the target zeolite is dependent on this type of intermediate and dependent on the dissolution of the starting zeolite. Based on the findings of optimal OH-/T-atom ratios and synchronization of Si/Al ratio in the reactant zeolite with the product zeolite we also show that AEI and AFX can be obtained from CHA, which has similar structural features, but a higher framework density (FD) than e.g. FAU. This indicates that zeolite-to-zeolite transformations does not have to proceed from zeolites with low FDs (i.e. high stabilization energies) to higher FDs (i.e. lower stabilization energies), but is mainly driven by favorable OSDA-zeolite interactions. Overall, results are rationalized in a scheme where the dissolution rate of a starting zeolite with key structural features must be lower than the crystallization of the zeolite product in order to obtain a successful zeolite-to-zeolite transformation. es_ES
dc.description.sponsorship The authors thank Haldor Topsoe A/S and Innovation Fund Denmark for financial support under the Industrial PhD programme (Case no. 1355-0174B). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Microporous and Mesoporous Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Zeolite-to-zeolite transformations es_ES
dc.subject Zeolite crystallization es_ES
dc.subject Small-pore zeolite es_ES
dc.subject AEI and AFX es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.micromeso.2018.11.002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Danish Agency for Science and Higher Education//1355-00174/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Boruntea, C.; Lundegaard, LF.; Corma Canós, A.; Vennestrom, PNR. (2019). Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations. Microporous and Mesoporous Materials. 278:105-114. https://doi.org/10.1016/j.micromeso.2018.11.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.micromeso.2018.11.002 es_ES
dc.description.upvformatpinicio 105 es_ES
dc.description.upvformatpfin 114 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 278 es_ES
dc.relation.pasarela S\391606 es_ES
dc.contributor.funder Danish Agency for Science and Higher Education es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Chang, C. D. (1984). Methanol Conversion to Light Olefins. Catalysis Reviews, 26(3-4), 323-345. doi:10.1080/01614948408064716 es_ES
dc.description.references Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4 es_ES
dc.description.references Djieugoue, M.-A., Prakash, A. M., & Kevan, L. (2000). Catalytic Study of Methanol-to-Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves:  Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration. The Journal of Physical Chemistry B, 104(27), 6452-6461. doi:10.1021/jp000504j es_ES
dc.description.references Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909 es_ES
dc.description.references Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657 es_ES
dc.description.references Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79. doi:10.1016/j.memsci.2015.10.049 es_ES
dc.description.references Li, S., Zong, Z., Zhou, S. J., Huang, Y., Song, Z., Feng, X., … Carreon, M. A. (2015). SAPO-34 Membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation. Journal of Membrane Science, 487, 141-151. doi:10.1016/j.memsci.2015.03.078 es_ES
dc.description.references Wu, T., Wang, B., Lu, Z., Zhou, R., & Chen, X. (2014). Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 471, 338-346. doi:10.1016/j.memsci.2014.08.035 es_ES
dc.description.references Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092 es_ES
dc.description.references Bull, I.; Boorse, R. S.; Jaglowski, W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Xue, W. M.; Burk, P.; Dettling, J. C.; Caudle, M. T. Copper, CHA zeolinte catalysts. U.S. Patent 0,226,545, 2008. es_ES
dc.description.references Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., & Peden, C. H. F. (2010). Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 275(2), 187-190. doi:10.1016/j.jcat.2010.07.031 es_ES
dc.description.references Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022 es_ES
dc.description.references Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k es_ES
dc.description.references Gao, F., Kwak, J. H., Szanyi, J., & Peden, C. H. F. (2013). Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts. Topics in Catalysis, 56(15-17), 1441-1459. doi:10.1007/s11244-013-0145-8 es_ES
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 es_ES
dc.description.references Chiyoda, O., & Davis, M. E. (1999). Hydrothermal conversion of Y-zeolite using alkaline-earth cations. Microporous and Mesoporous Materials, 32(3), 257-264. doi:10.1016/s1387-1811(99)00112-2 es_ES
dc.description.references Martín, N., Moliner, M., & Corma, A. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 51(49), 9965-9968. doi:10.1039/c5cc02670a es_ES
dc.description.references Nedyalkova, R., Montreuil, C., Lambert, C., & Olsson, L. (2013). Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 56(9-10), 550-557. doi:10.1007/s11244-013-0015-4 es_ES
dc.description.references Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c es_ES
dc.description.references Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183 es_ES
dc.description.references DWYER, F., & CHU, P. (1979). ZSM-4 crystallization via faujasite metamorphosis. Journal of Catalysis, 59(2), 263-271. doi:10.1016/s0021-9517(79)80030-5 es_ES
dc.description.references Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6 es_ES
dc.description.references Moteki, T., & Lobo, R. F. (2016). A General Method for Aluminum Incorporation into High-Silica Zeolites Prepared in Fluoride Media. Chemistry of Materials, 28(2), 638-649. doi:10.1021/acs.chemmater.5b04439 es_ES
dc.description.references Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., & Okubo, T. (2012). A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 134(28), 11542-11549. doi:10.1021/ja3022335 es_ES
dc.description.references Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M., & Sano, T. (2013). Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 13(4), 3020-3026. doi:10.1166/jnn.2013.7356 es_ES
dc.description.references Zones, S. I., & Nakagawa, Y. (1994). Boron-beta zeolite hydrothermal conversions: The influence of template structure and of boron concentration and source. Microporous Materials, 2(6), 543-555. doi:10.1016/0927-6513(94)00025-5 es_ES
dc.description.references Goel, S., Zones, S. I., & Iglesia, E. (2015). Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 27(6), 2056-2066. doi:10.1021/cm504510f es_ES
dc.description.references Lobo, R. F., Zones, S. I., & Medrud, R. C. (1996). Synthesis and Rietveld Refinement of the Small-Pore Zeolite SSZ-16. Chemistry of Materials, 8(10), 2409-2411. doi:10.1021/cm960289c es_ES
dc.description.references Hrabanek, P., Zikanova, A., Supinkova, T., Drahokoupil, J., Fila, V., Lhotka, M., … Kocirik, M. (2016). Static in-situ hydrothermal synthesis of small pore zeolite SSZ-16 (AFX) using heated and pre-aged synthesis mixtures. Microporous and Mesoporous Materials, 228, 107-115. doi:10.1016/j.micromeso.2016.03.033 es_ES
dc.description.references Zones, S. I. Zeolite SSZ-16. U.S. Patent 4,508,837, 1982. es_ES
dc.description.references Zones, S. I.; Nakagawa, Y.; Evans, S. T.; Lee, G. S. Zeolite SSZ-39. U.S. Patent 5,958,370, 1997. es_ES
dc.description.references Zones, S. I. Synthesis of SSZ-16 zeolite catalyst. U.S. Patent 5,194,235, 1992. es_ES
dc.description.references Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022 es_ES
dc.description.references Dusselier, M., Schmidt, J. E., Moulton, R., Haymore, B., Hellums, M., & Davis, M. E. (2015). Influence of Organic Structure Directing Agent Isomer Distribution on the Synthesis of SSZ-39. Chemistry of Materials, 27(7), 2695-2702. doi:10.1021/acs.chemmater.5b00651 es_ES
dc.description.references Fickel, D. W., & Lobo, R. F. (2009). Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C, 114(3), 1633-1640. doi:10.1021/jp9105025 es_ES
dc.description.references Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h es_ES
dc.description.references Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u es_ES
dc.description.references Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g es_ES
dc.description.references Xie, D., McCusker, L. B., Baerlocher, C., Zones, S. I., Wan, W., & Zou, X. (2013). SSZ-52, a Zeolite with an 18-Layer Aluminosilicate Framework Structure Related to That of the DeNOx Catalyst Cu-SSZ-13. Journal of the American Chemical Society, 135(28), 10519-10524. doi:10.1021/ja4043615 es_ES
dc.description.references Zones, S. I., Nakagawa, Y., Lee, G. S., Chen, C. Y., & Yuen, L. T. (1998). Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Microporous and Mesoporous Materials, 21(4-6), 199-211. doi:10.1016/s1387-1811(98)00011-0 es_ES
dc.description.references Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124 es_ES
dc.description.references Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem