Mostrar el registro sencillo del ítem
dc.contributor.author | Boruntea, Cristian-R. | es_ES |
dc.contributor.author | Lundegaard, Lars F. | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Vennestrom, Peter N. R. | es_ES |
dc.date.accessioned | 2021-01-20T04:32:04Z | |
dc.date.available | 2021-01-20T04:32:04Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 1387-1811 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159526 | |
dc.description.abstract | [EN] The OH-/T-atom ratio and the Al-source are identified as critical parameters for the successful crystallization of AEI and AFX type zeolites when sufficient organic structure directing agent (OSDA) molecules are present. Especially the use of a zeolite as the Al-source is essential. When a complete zeolite-to-zeolite transformation of FAU is explored it is found to proceed without any solid crystalline intermediates. The optimal OH-/T-atom ratio can also be decreased when the Al-content in the reactant zeolite is increased to resemble the product composition better. This makes higher yields and better utilization of the OSDA possible compared to gels with less Al. During successful zeolite transformations the lattice parameter of FAU, which is proportional to the Alcontent, seems to converge at a certain range before the onset of product crystallization. This indicates that successful nucleation and/or formation of the target zeolite is dependent on this type of intermediate and dependent on the dissolution of the starting zeolite. Based on the findings of optimal OH-/T-atom ratios and synchronization of Si/Al ratio in the reactant zeolite with the product zeolite we also show that AEI and AFX can be obtained from CHA, which has similar structural features, but a higher framework density (FD) than e.g. FAU. This indicates that zeolite-to-zeolite transformations does not have to proceed from zeolites with low FDs (i.e. high stabilization energies) to higher FDs (i.e. lower stabilization energies), but is mainly driven by favorable OSDA-zeolite interactions. Overall, results are rationalized in a scheme where the dissolution rate of a starting zeolite with key structural features must be lower than the crystallization of the zeolite product in order to obtain a successful zeolite-to-zeolite transformation. | es_ES |
dc.description.sponsorship | The authors thank Haldor Topsoe A/S and Innovation Fund Denmark for financial support under the Industrial PhD programme (Case no. 1355-0174B). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Microporous and Mesoporous Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Zeolite-to-zeolite transformations | es_ES |
dc.subject | Zeolite crystallization | es_ES |
dc.subject | Small-pore zeolite | es_ES |
dc.subject | AEI and AFX | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.micromeso.2018.11.002 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Danish Agency for Science and Higher Education//1355-00174/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Boruntea, C.; Lundegaard, LF.; Corma Canós, A.; Vennestrom, PNR. (2019). Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations. Microporous and Mesoporous Materials. 278:105-114. https://doi.org/10.1016/j.micromeso.2018.11.002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.micromeso.2018.11.002 | es_ES |
dc.description.upvformatpinicio | 105 | es_ES |
dc.description.upvformatpfin | 114 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 278 | es_ES |
dc.relation.pasarela | S\391606 | es_ES |
dc.contributor.funder | Danish Agency for Science and Higher Education | es_ES |
dc.description.references | Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 | es_ES |
dc.description.references | Chang, C. D. (1984). Methanol Conversion to Light Olefins. Catalysis Reviews, 26(3-4), 323-345. doi:10.1080/01614948408064716 | es_ES |
dc.description.references | Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4 | es_ES |
dc.description.references | Djieugoue, M.-A., Prakash, A. M., & Kevan, L. (2000). Catalytic Study of Methanol-to-Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves: Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration. The Journal of Physical Chemistry B, 104(27), 6452-6461. doi:10.1021/jp000504j | es_ES |
dc.description.references | Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909 | es_ES |
dc.description.references | Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657 | es_ES |
dc.description.references | Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79. doi:10.1016/j.memsci.2015.10.049 | es_ES |
dc.description.references | Li, S., Zong, Z., Zhou, S. J., Huang, Y., Song, Z., Feng, X., … Carreon, M. A. (2015). SAPO-34 Membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation. Journal of Membrane Science, 487, 141-151. doi:10.1016/j.memsci.2015.03.078 | es_ES |
dc.description.references | Wu, T., Wang, B., Lu, Z., Zhou, R., & Chen, X. (2014). Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 471, 338-346. doi:10.1016/j.memsci.2014.08.035 | es_ES |
dc.description.references | Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092 | es_ES |
dc.description.references | Bull, I.; Boorse, R. S.; Jaglowski, W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Xue, W. M.; Burk, P.; Dettling, J. C.; Caudle, M. T. Copper, CHA zeolinte catalysts. U.S. Patent 0,226,545, 2008. | es_ES |
dc.description.references | Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., & Peden, C. H. F. (2010). Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 275(2), 187-190. doi:10.1016/j.jcat.2010.07.031 | es_ES |
dc.description.references | Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022 | es_ES |
dc.description.references | Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k | es_ES |
dc.description.references | Gao, F., Kwak, J. H., Szanyi, J., & Peden, C. H. F. (2013). Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts. Topics in Catalysis, 56(15-17), 1441-1459. doi:10.1007/s11244-013-0145-8 | es_ES |
dc.description.references | Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 | es_ES |
dc.description.references | Chiyoda, O., & Davis, M. E. (1999). Hydrothermal conversion of Y-zeolite using alkaline-earth cations. Microporous and Mesoporous Materials, 32(3), 257-264. doi:10.1016/s1387-1811(99)00112-2 | es_ES |
dc.description.references | Martín, N., Moliner, M., & Corma, A. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 51(49), 9965-9968. doi:10.1039/c5cc02670a | es_ES |
dc.description.references | Nedyalkova, R., Montreuil, C., Lambert, C., & Olsson, L. (2013). Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 56(9-10), 550-557. doi:10.1007/s11244-013-0015-4 | es_ES |
dc.description.references | Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c | es_ES |
dc.description.references | Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183 | es_ES |
dc.description.references | DWYER, F., & CHU, P. (1979). ZSM-4 crystallization via faujasite metamorphosis. Journal of Catalysis, 59(2), 263-271. doi:10.1016/s0021-9517(79)80030-5 | es_ES |
dc.description.references | Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6 | es_ES |
dc.description.references | Moteki, T., & Lobo, R. F. (2016). A General Method for Aluminum Incorporation into High-Silica Zeolites Prepared in Fluoride Media. Chemistry of Materials, 28(2), 638-649. doi:10.1021/acs.chemmater.5b04439 | es_ES |
dc.description.references | Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., & Okubo, T. (2012). A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 134(28), 11542-11549. doi:10.1021/ja3022335 | es_ES |
dc.description.references | Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M., & Sano, T. (2013). Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 13(4), 3020-3026. doi:10.1166/jnn.2013.7356 | es_ES |
dc.description.references | Zones, S. I., & Nakagawa, Y. (1994). Boron-beta zeolite hydrothermal conversions: The influence of template structure and of boron concentration and source. Microporous Materials, 2(6), 543-555. doi:10.1016/0927-6513(94)00025-5 | es_ES |
dc.description.references | Goel, S., Zones, S. I., & Iglesia, E. (2015). Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 27(6), 2056-2066. doi:10.1021/cm504510f | es_ES |
dc.description.references | Lobo, R. F., Zones, S. I., & Medrud, R. C. (1996). Synthesis and Rietveld Refinement of the Small-Pore Zeolite SSZ-16. Chemistry of Materials, 8(10), 2409-2411. doi:10.1021/cm960289c | es_ES |
dc.description.references | Hrabanek, P., Zikanova, A., Supinkova, T., Drahokoupil, J., Fila, V., Lhotka, M., … Kocirik, M. (2016). Static in-situ hydrothermal synthesis of small pore zeolite SSZ-16 (AFX) using heated and pre-aged synthesis mixtures. Microporous and Mesoporous Materials, 228, 107-115. doi:10.1016/j.micromeso.2016.03.033 | es_ES |
dc.description.references | Zones, S. I. Zeolite SSZ-16. U.S. Patent 4,508,837, 1982. | es_ES |
dc.description.references | Zones, S. I.; Nakagawa, Y.; Evans, S. T.; Lee, G. S. Zeolite SSZ-39. U.S. Patent 5,958,370, 1997. | es_ES |
dc.description.references | Zones, S. I. Synthesis of SSZ-16 zeolite catalyst. U.S. Patent 5,194,235, 1992. | es_ES |
dc.description.references | Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022 | es_ES |
dc.description.references | Dusselier, M., Schmidt, J. E., Moulton, R., Haymore, B., Hellums, M., & Davis, M. E. (2015). Influence of Organic Structure Directing Agent Isomer Distribution on the Synthesis of SSZ-39. Chemistry of Materials, 27(7), 2695-2702. doi:10.1021/acs.chemmater.5b00651 | es_ES |
dc.description.references | Fickel, D. W., & Lobo, R. F. (2009). Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C, 114(3), 1633-1640. doi:10.1021/jp9105025 | es_ES |
dc.description.references | Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h | es_ES |
dc.description.references | Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u | es_ES |
dc.description.references | Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g | es_ES |
dc.description.references | Xie, D., McCusker, L. B., Baerlocher, C., Zones, S. I., Wan, W., & Zou, X. (2013). SSZ-52, a Zeolite with an 18-Layer Aluminosilicate Framework Structure Related to That of the DeNOx Catalyst Cu-SSZ-13. Journal of the American Chemical Society, 135(28), 10519-10524. doi:10.1021/ja4043615 | es_ES |
dc.description.references | Zones, S. I., Nakagawa, Y., Lee, G. S., Chen, C. Y., & Yuen, L. T. (1998). Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Microporous and Mesoporous Materials, 21(4-6), 199-211. doi:10.1016/s1387-1811(98)00011-0 | es_ES |
dc.description.references | Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124 | es_ES |
dc.description.references | Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024 | es_ES |