Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006
Chang, C. D. (1984). Methanol Conversion to Light Olefins. Catalysis Reviews, 26(3-4), 323-345. doi:10.1080/01614948408064716
Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4
[+]
Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006
Chang, C. D. (1984). Methanol Conversion to Light Olefins. Catalysis Reviews, 26(3-4), 323-345. doi:10.1080/01614948408064716
Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4
Djieugoue, M.-A., Prakash, A. M., & Kevan, L. (2000). Catalytic Study of Methanol-to-Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves: Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration. The Journal of Physical Chemistry B, 104(27), 6452-6461. doi:10.1021/jp000504j
Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909
Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657
Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79. doi:10.1016/j.memsci.2015.10.049
Li, S., Zong, Z., Zhou, S. J., Huang, Y., Song, Z., Feng, X., … Carreon, M. A. (2015). SAPO-34 Membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation. Journal of Membrane Science, 487, 141-151. doi:10.1016/j.memsci.2015.03.078
Wu, T., Wang, B., Lu, Z., Zhou, R., & Chen, X. (2014). Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 471, 338-346. doi:10.1016/j.memsci.2014.08.035
Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092
Bull, I.; Boorse, R. S.; Jaglowski, W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Xue, W. M.; Burk, P.; Dettling, J. C.; Caudle, M. T. Copper, CHA zeolinte catalysts. U.S. Patent 0,226,545, 2008.
Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., & Peden, C. H. F. (2010). Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 275(2), 187-190. doi:10.1016/j.jcat.2010.07.031
Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022
Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k
Gao, F., Kwak, J. H., Szanyi, J., & Peden, C. H. F. (2013). Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts. Topics in Catalysis, 56(15-17), 1441-1459. doi:10.1007/s11244-013-0145-8
Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095
Chiyoda, O., & Davis, M. E. (1999). Hydrothermal conversion of Y-zeolite using alkaline-earth cations. Microporous and Mesoporous Materials, 32(3), 257-264. doi:10.1016/s1387-1811(99)00112-2
Martín, N., Moliner, M., & Corma, A. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 51(49), 9965-9968. doi:10.1039/c5cc02670a
Nedyalkova, R., Montreuil, C., Lambert, C., & Olsson, L. (2013). Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 56(9-10), 550-557. doi:10.1007/s11244-013-0015-4
Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c
Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183
DWYER, F., & CHU, P. (1979). ZSM-4 crystallization via faujasite metamorphosis. Journal of Catalysis, 59(2), 263-271. doi:10.1016/s0021-9517(79)80030-5
Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6
Moteki, T., & Lobo, R. F. (2016). A General Method for Aluminum Incorporation into High-Silica Zeolites Prepared in Fluoride Media. Chemistry of Materials, 28(2), 638-649. doi:10.1021/acs.chemmater.5b04439
Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., & Okubo, T. (2012). A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 134(28), 11542-11549. doi:10.1021/ja3022335
Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M., & Sano, T. (2013). Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 13(4), 3020-3026. doi:10.1166/jnn.2013.7356
Zones, S. I., & Nakagawa, Y. (1994). Boron-beta zeolite hydrothermal conversions: The influence of template structure and of boron concentration and source. Microporous Materials, 2(6), 543-555. doi:10.1016/0927-6513(94)00025-5
Goel, S., Zones, S. I., & Iglesia, E. (2015). Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 27(6), 2056-2066. doi:10.1021/cm504510f
Lobo, R. F., Zones, S. I., & Medrud, R. C. (1996). Synthesis and Rietveld Refinement of the Small-Pore Zeolite SSZ-16. Chemistry of Materials, 8(10), 2409-2411. doi:10.1021/cm960289c
Hrabanek, P., Zikanova, A., Supinkova, T., Drahokoupil, J., Fila, V., Lhotka, M., … Kocirik, M. (2016). Static in-situ hydrothermal synthesis of small pore zeolite SSZ-16 (AFX) using heated and pre-aged synthesis mixtures. Microporous and Mesoporous Materials, 228, 107-115. doi:10.1016/j.micromeso.2016.03.033
Zones, S. I. Zeolite SSZ-16. U.S. Patent 4,508,837, 1982.
Zones, S. I.; Nakagawa, Y.; Evans, S. T.; Lee, G. S. Zeolite SSZ-39. U.S. Patent 5,958,370, 1997.
Zones, S. I. Synthesis of SSZ-16 zeolite catalyst. U.S. Patent 5,194,235, 1992.
Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022
Dusselier, M., Schmidt, J. E., Moulton, R., Haymore, B., Hellums, M., & Davis, M. E. (2015). Influence of Organic Structure Directing Agent Isomer Distribution on the Synthesis of SSZ-39. Chemistry of Materials, 27(7), 2695-2702. doi:10.1021/acs.chemmater.5b00651
Fickel, D. W., & Lobo, R. F. (2009). Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C, 114(3), 1633-1640. doi:10.1021/jp9105025
Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h
Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u
Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g
Xie, D., McCusker, L. B., Baerlocher, C., Zones, S. I., Wan, W., & Zou, X. (2013). SSZ-52, a Zeolite with an 18-Layer Aluminosilicate Framework Structure Related to That of the DeNOx Catalyst Cu-SSZ-13. Journal of the American Chemical Society, 135(28), 10519-10524. doi:10.1021/ja4043615
Zones, S. I., Nakagawa, Y., Lee, G. S., Chen, C. Y., & Yuen, L. T. (1998). Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Microporous and Mesoporous Materials, 21(4-6), 199-211. doi:10.1016/s1387-1811(98)00011-0
Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124
Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024
[-]