- -

Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations

Mostrar el registro completo del ítem

Boruntea, C.; Lundegaard, LF.; Corma Canós, A.; Vennestrom, PNR. (2019). Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations. Microporous and Mesoporous Materials. 278:105-114. https://doi.org/10.1016/j.micromeso.2018.11.002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159526

Ficheros en el ítem

Metadatos del ítem

Título: Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations
Autor: Boruntea, Cristian-R. Lundegaard, Lars F. Corma Canós, Avelino Vennestrom, Peter N. R.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The OH-/T-atom ratio and the Al-source are identified as critical parameters for the successful crystallization of AEI and AFX type zeolites when sufficient organic structure directing agent (OSDA) molecules are ...[+]
Palabras clave: Zeolite-to-zeolite transformations , Zeolite crystallization , Small-pore zeolite , AEI and AFX
Derechos de uso: Cerrado
Fuente:
Microporous and Mesoporous Materials. (issn: 1387-1811 )
DOI: 10.1016/j.micromeso.2018.11.002
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.micromeso.2018.11.002
Código del Proyecto:
info:eu-repo/grantAgreement/Danish Agency for Science and Higher Education//1355-00174/
Agradecimientos:
The authors thank Haldor Topsoe A/S and Innovation Fund Denmark for financial support under the Industrial PhD programme (Case no. 1355-0174B).
Tipo: Artículo

References

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Chang, C. D. (1984). Methanol Conversion to Light Olefins. Catalysis Reviews, 26(3-4), 323-345. doi:10.1080/01614948408064716

Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4 [+]
Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Chang, C. D. (1984). Methanol Conversion to Light Olefins. Catalysis Reviews, 26(3-4), 323-345. doi:10.1080/01614948408064716

Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4

Djieugoue, M.-A., Prakash, A. M., & Kevan, L. (2000). Catalytic Study of Methanol-to-Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves:  Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration. The Journal of Physical Chemistry B, 104(27), 6452-6461. doi:10.1021/jp000504j

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657

Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79. doi:10.1016/j.memsci.2015.10.049

Li, S., Zong, Z., Zhou, S. J., Huang, Y., Song, Z., Feng, X., … Carreon, M. A. (2015). SAPO-34 Membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation. Journal of Membrane Science, 487, 141-151. doi:10.1016/j.memsci.2015.03.078

Wu, T., Wang, B., Lu, Z., Zhou, R., & Chen, X. (2014). Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 471, 338-346. doi:10.1016/j.memsci.2014.08.035

Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092

Bull, I.; Boorse, R. S.; Jaglowski, W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Xue, W. M.; Burk, P.; Dettling, J. C.; Caudle, M. T. Copper, CHA zeolinte catalysts. U.S. Patent 0,226,545, 2008.

Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., & Peden, C. H. F. (2010). Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 275(2), 187-190. doi:10.1016/j.jcat.2010.07.031

Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022

Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k

Gao, F., Kwak, J. H., Szanyi, J., & Peden, C. H. F. (2013). Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts. Topics in Catalysis, 56(15-17), 1441-1459. doi:10.1007/s11244-013-0145-8

Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095

Chiyoda, O., & Davis, M. E. (1999). Hydrothermal conversion of Y-zeolite using alkaline-earth cations. Microporous and Mesoporous Materials, 32(3), 257-264. doi:10.1016/s1387-1811(99)00112-2

Martín, N., Moliner, M., & Corma, A. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 51(49), 9965-9968. doi:10.1039/c5cc02670a

Nedyalkova, R., Montreuil, C., Lambert, C., & Olsson, L. (2013). Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 56(9-10), 550-557. doi:10.1007/s11244-013-0015-4

Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c

Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183

DWYER, F., & CHU, P. (1979). ZSM-4 crystallization via faujasite metamorphosis. Journal of Catalysis, 59(2), 263-271. doi:10.1016/s0021-9517(79)80030-5

Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6

Moteki, T., & Lobo, R. F. (2016). A General Method for Aluminum Incorporation into High-Silica Zeolites Prepared in Fluoride Media. Chemistry of Materials, 28(2), 638-649. doi:10.1021/acs.chemmater.5b04439

Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., & Okubo, T. (2012). A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 134(28), 11542-11549. doi:10.1021/ja3022335

Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M., & Sano, T. (2013). Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 13(4), 3020-3026. doi:10.1166/jnn.2013.7356

Zones, S. I., & Nakagawa, Y. (1994). Boron-beta zeolite hydrothermal conversions: The influence of template structure and of boron concentration and source. Microporous Materials, 2(6), 543-555. doi:10.1016/0927-6513(94)00025-5

Goel, S., Zones, S. I., & Iglesia, E. (2015). Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 27(6), 2056-2066. doi:10.1021/cm504510f

Lobo, R. F., Zones, S. I., & Medrud, R. C. (1996). Synthesis and Rietveld Refinement of the Small-Pore Zeolite SSZ-16. Chemistry of Materials, 8(10), 2409-2411. doi:10.1021/cm960289c

Hrabanek, P., Zikanova, A., Supinkova, T., Drahokoupil, J., Fila, V., Lhotka, M., … Kocirik, M. (2016). Static in-situ hydrothermal synthesis of small pore zeolite SSZ-16 (AFX) using heated and pre-aged synthesis mixtures. Microporous and Mesoporous Materials, 228, 107-115. doi:10.1016/j.micromeso.2016.03.033

Zones, S. I. Zeolite SSZ-16. U.S. Patent 4,508,837, 1982.

Zones, S. I.; Nakagawa, Y.; Evans, S. T.; Lee, G. S. Zeolite SSZ-39. U.S. Patent 5,958,370, 1997.

Zones, S. I. Synthesis of SSZ-16 zeolite catalyst. U.S. Patent 5,194,235, 1992.

Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022

Dusselier, M., Schmidt, J. E., Moulton, R., Haymore, B., Hellums, M., & Davis, M. E. (2015). Influence of Organic Structure Directing Agent Isomer Distribution on the Synthesis of SSZ-39. Chemistry of Materials, 27(7), 2695-2702. doi:10.1021/acs.chemmater.5b00651

Fickel, D. W., & Lobo, R. F. (2009). Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C, 114(3), 1633-1640. doi:10.1021/jp9105025

Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h

Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u

Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g

Xie, D., McCusker, L. B., Baerlocher, C., Zones, S. I., Wan, W., & Zou, X. (2013). SSZ-52, a Zeolite with an 18-Layer Aluminosilicate Framework Structure Related to That of the DeNOx Catalyst Cu-SSZ-13. Journal of the American Chemical Society, 135(28), 10519-10524. doi:10.1021/ja4043615

Zones, S. I., Nakagawa, Y., Lee, G. S., Chen, C. Y., & Yuen, L. T. (1998). Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Microporous and Mesoporous Materials, 21(4-6), 199-211. doi:10.1016/s1387-1811(98)00011-0

Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124

Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem