- -

Modelado y control de la producción de microalgas en fotobiorreactores industriales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado y control de la producción de microalgas en fotobiorreactores industriales

Mostrar el registro completo del ítem

Guzmán, JL.; Acién, FG.; Berenguel, M. (2020). Modelado y control de la producción de microalgas en fotobiorreactores industriales. Revista Iberoamericana de Automática e Informática industrial. 18(1):1-18. https://doi.org/10.4995/riai.2020.13604

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160486

Ficheros en el ítem

Metadatos del ítem

Título: Modelado y control de la producción de microalgas en fotobiorreactores industriales
Otro titulo: Modelling and control of microalgae production in industrial photobioreactors
Autor: Guzmán, J. L. Acién, F. G. Berenguel, M.
Fecha difusión:
Resumen:
[EN] This manuscript presents a general overview of the microalgae production process from a modelling and control perspective. First, the main advantages and the potential of these microorganisms are motivated, describing ...[+]


[ES] Este artículo presenta una visión general sobre el proceso de producción de microalgas desde un punto de vista de modelado y control de procesos. En primer lugar se exponen las ventajas y el potencial de este tipo de ...[+]
Palabras clave: Microalgas , Modelado , Control , Fotobioreactores , Biotecnología , Microalgae , Modelling , Photobioreactors , Biotechnology
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2020.13604
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2020.13604
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84259-C2-1-R/ES/MODELADO Y CONTROL DEL PROCESO COMBINADO DE PRODUCCION DE MICROALGAS Y TRATAMIENTO DE AGUAS RESIDUALES CON REACTORES INDUSTRIALES/
info:eu-repo/grantAgreement/EC/H2020/727874/EU/Sustainable Algae Biorefinery for Agriculture aNd Aquaculture/
Agradecimientos:
Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Economía y Competitividad con el proyecto DPI2017-84259-C2-1- R y el Programa de Investigación e Innovación Horizonte 2020 de la Unión Europea ...[+]
Tipo: Artículo

References

Acién, F. G., Camacho, F. G., Sánchez-Pérez, J. A., Fernández-Sevilla, J. M., Molina-Grima, E., 1997. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering 55, 701-714. https://doi.org/10.1002/(SICI)1097-0290(19970905)55:5<701::AID-BIT1>3.0.CO;2-F

Acién, F. G., Fernández-Sevilla, J. M., Molina-Grima, E., 2017. Microalgae: The basis of mankind sustainability. In: Case Study of Innovative Projects - Successful Real Cases. InTech, Ch. 7, pp. 123-140. https://doi.org/10.5772/67930

Acién, F. G., García-Camacho, F., Sánchez-Pérez, J. A., Fernández-Sevilla, J. M., Molina-Grima, E., 1998. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering 58, 605-616. https://doi.org/10.1002/(SICI)1097-0290(19980620)58:6<605::AID-BIT6>3.0.CO;2-M [+]
Acién, F. G., Camacho, F. G., Sánchez-Pérez, J. A., Fernández-Sevilla, J. M., Molina-Grima, E., 1997. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering 55, 701-714. https://doi.org/10.1002/(SICI)1097-0290(19970905)55:5<701::AID-BIT1>3.0.CO;2-F

Acién, F. G., Fernández-Sevilla, J. M., Molina-Grima, E., 2017. Microalgae: The basis of mankind sustainability. In: Case Study of Innovative Projects - Successful Real Cases. InTech, Ch. 7, pp. 123-140. https://doi.org/10.5772/67930

Acién, F. G., García-Camacho, F., Sánchez-Pérez, J. A., Fernández-Sevilla, J. M., Molina-Grima, E., 1998. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering 58, 605-616. https://doi.org/10.1002/(SICI)1097-0290(19980620)58:6<605::AID-BIT6>3.0.CO;2-M

Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., Molina-Grima, E., 2016. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology 100, 9013-9022. https://doi.org/10.1007/s00253-016-7835-7

Barcelo-Villalobos, M., Acién, F. G., Guzmán, J. L., Fernández-Sevilla, J. M., Berenguel, M., 2019a. New strategies for the design and control of raceway reactors to optimize microalgae production. In: Handbook of Algal Technologies and Phytochemicals. Volume II: Phycoremediation, Biofuels and Global Biomass Production. CRC Press, Ch. 18, pp. 221-230. https://doi.org/10.1201/9780429057892-19

Barcelo-Villalobos, M., Guzmán, J. L., Acién, F. G., 2019b. Nonlinear predictive control of a pH process. In: 2nd IWA Conference on Algal Technologies for Wastewater Treatment and Resource Recovery. Valladolid, Spain.

Barcelo-Villalobos, M., Guzmán, J. L., Martín-Cara, I., Sánchez, J. A., Acién, F. G., 2018. Analysis of mass transfer capacity in raceway reactors. Algal Research 35, 91-97. https://doi.org/10.1016/j.algal.2018.08.017

Benemann, J. R., 2003. Biofixation of CO2 and greenhouse gas abatement with microalgae. In: 6th Asia-Pacific Conference on Algal Biotechnology. Makati City, Philippines.

Berenguel, M., Rodríguez, F., Acién, F. G., García, J. L., 2004. Model predictive control of pH in tubular photobioreactors. Journal of Process Control 14, 377-387. https://doi.org/10.1016/j.jprocont.2003.07.001

Bernard, O., 2011. Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. Journal of Process Control 21, 1378-1389. https://doi.org/10.1016/j.jprocont.2011.07.012

Borowitzka, M. A., 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology 70 (1), 313 - 321, biotechnological Aspects of Marine Sponges. https://doi.org/10.1016/S0168-1656(99)00083-8

Brindley, C., Jiménez-Ruíz, N., Acién, F. G., Fernández-Sevilla, J. M., 2016. Light regime optimization in photobioreactors using a dynamic photosynthesis model. Algal Research 16, 399-408. https://doi.org/10.1016/j.algal.2016.03.033

Carreno-Zagarra, J. J., Guzmán, J. L., Moreno, J. C., Villamizar, R., 2019. Linear active disturbance rejection control for a raceway photobioreactor. Control Engineering Practice 85, 271-279. https://doi.org/10.1016/j.conengprac.2019.02.007

Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., Chang, J. S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102, 71-81. https://doi.org/10.1016/j.biortech.2010.06.159

Chen, J., Wang, Y., Benemann, J. R., Zhang, X., Hu, H., Qin, S., 2016. Microalgal industry in China: Challenges and prospects. Journal of Applied Phycology 28, 715-725. https://doi.org/10.1007/s10811-015-0720-4

Chiaramonti, D., Prussi, M., Casini, D., Tredici, M. R., Rodolfi, L., Bassi, N., Zittelli, G. C., Bondioli, P., 2013. Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy 102, 101-111. https://doi.org/10.1016/j.apenergy.2012.07.040

Concas, A., Pisu, M., Cao, G., 2010. Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae. Chemical Engineering Journal 157, 297-303. https://doi.org/10.1016/j.cej.2009.10.059

Costache, T. A., Acién, F. G., Morales, M. M., Fernández-Sevilla, J. M., Stamatin, I., Molina-Grima, E., 2013. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Applied Microbiology and Biotechnology 97, 7627-7637. https://doi.org/10.1007/s00253-013-5035-2

Cuaresma, M., Janssen, M., Valchez, C., Wijffels, R. H., 2011. Horizontal or vertical photobioreactors? how to improve microalgae photosynthetic efficiency. Bioresource Technology 102, 5129-5137. https://doi.org/10.1016/j.biortech.2011.01.078

de Andrade, G. A., Berenguel, M., Guzmán, J. L., Pagano, D. J., Acién, F. G., 2016a. Optimization of biomass production in outdoor tubular photobioreactors. Journal of Process Control 37, 58-69. https://doi.org/10.1016/j.jprocont.2015.10.001

de Andrade, G. A., Pagano, D. J., Guzmán, J. L., Berenguel, M., Fernández, I., Acién, F. G., 2016b. Distributed sliding mode control of pH in tubular ' photobioreactors. IEEE Transactions on Control Systems Technology 24, 1160-1173. https://doi.org/10.1109/TCST.2015.2480840

de Godos, I., Mendoza, J. L., Acién, F. G., Molina, E., Banks, C. J., Heaven, S., Rogalla, F., 2014. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology 153, 307-314. https://doi.org/10.1016/j.biortech.2013.11.087

Djema, W., Bernard, O., Giraldi, L., 2020. Separating two species of microalgae in photobioreactors in minimal time. Journal of Process Control 87, 120-129. https://doi.org/10.1016/j.jprocont.2020.01.003

Dochain, D., 2000. State observers for tubular reactors with unknown kinetics. Journal of Process Control 10, 259-268. https://doi.org/10.1016/S0959-1524(99)00020-7

Dochain, D., 2008. Bioprocess Control. John Wiley & Sons, Ltd. Doran, P. M., 1997. Bioprocess Engineering Principles. Elsevier Science & Technology Booksl. https://doi.org/10.1002/9780470611128

Fernández, I., Acién, F. G., Berenguel, M., Guzmán, J. L., 2014a. First principles model of a tubular photobioreactor for microalgal production. Industrial & Engineering Chemistry Research 53, 11121-11136. https://doi.org/10.1021/ie501438r

Fernández, I., Acién, F. G., Berenguel, M., Guzmán, J. L., de Andrade, G. A., Pagano, D. J., 2014b. A lumped parameter chemical-physical model for tubular photobioreactors. Chemical Engineering Science 112, 116-129. https://doi.org/10.1016/j.ces.2014.03.020

Fernández, I., Acién, F. G., Fernández, J. M., Guzmán, J. L., Magán, J. J., Berenguel, M., 2012. Dynamic model of microalgal production in tubular photobioreactors. Bioresource Technology 126, 172-181. https://doi.org/10.1016/j.biortech.2012.08.087

Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., Mendoza, J. L., 2016a. Dynamic model of an industrial raceway reactor for microalgae production. Algal Research 17, 67-78. https://doi.org/10.1016/j.algal.2016.04.021

Fernández, I., Berenguel, M., Guzmán, J. L., Acién, F. G., de Andrade, G. A., Pagano, D. J., 2016b. Hierarchical control for microalgae biomass production in photobiorreactors. Control Engineering Practice 54, 246-255. https://doi.org/10.1016/j.conengprac.2016.06.007

Fernández, I., Guzmán, J. L., Acién, F. G., Berenguel, M., 2017. Dynamic modeling of microalgal production in photobioreactors. In: Prospects and Challenges in Algal Biotechnology. Springer, Ch. 7, pp. 49-87. https://doi.org/10.1007/978-981-10-1950-0

Fernández, I., Pena, J., Guzmán, J. L., Berenguel, M., Acién, F. G., 2010. Modelling and control issues of pH in tubular photobioreactors. IFAC Proceedings Volumes 43, 186-191. https://doi.org/10.3182/20100707-3-BE-2012.0046

García-Manas, F., Guzmán, J. L., Berenguel, M., Acién, F. G., 2019. Biomass estimation of an industrial raceway photobioreactor using an extended Kalman filter and a dynamic model for microalgae production. Algal Research 37, 103-114. https://doi.org/10.1016/j.algal.2018.11.009

Guterman, H., Vonshak, A., Ben-Yaakov, S., 1990. A macromodel for outdoor algal mass production. Biotechnology and Bioengineering 35, 809-819. https://doi.org/10.1002/bit.260350809

Hoyo, A., Guzmán, J., Acién, F. G., Moreno, J. C., 2019a. A graphical tool to simulate raceway photoreactors. In: 2nd IWA Conference on Algal Technologies for Wastewater Treatment and Resource Recovery. Valladolid, Spain.

Hoyo, A., Guzmán, J. L., Moreno, J. C., Berenguel, M., 2018. Control robusto con QFT del pH en un fotobiorreactor raceway. In: XXXVIII Jornadas de Automatica. Universidad de Oviedo, pp. 77-83.

Hoyo, A., Guzmán, J. L., Moreno, J. C., Berenguel, M., 2019b. Control predictivo lineal del pH en un fotobiorreactor raceway. In: XL Jornadas de Automatica. Universidade da Coruña, Servizo de Publicacións, pp. 414-420. https://doi.org/10.17979/spudc.9788497497169.414

Ifrim, G. A., Titica, M., Barbu, M., Boillereaux, L., Cogne, G., Caraman, S., Legrand, J., 2013. Multivariable feedback linearizing control of Chlamydomonas reinhardtii photoautotrophic growth process in a torus photobioreactor. Chemical Engineering Journal 218, 191-203. https://doi.org/10.1016/j.cej.2012.11.133

James, S. C., Boriah, V., 2010. Modeling algae growth in an open-channel raceway. Journal of Computational Biology 17, 895-906. https://doi.org/10.1089/cmb.2009.0078

Jupsin, H., Praet, E., Vasel, J. L., 2003. Dynamic mathematical model of high rate algal ponds (HRAP). Water Science and Technology 48, 197-204. https://doi.org/10.2166/wst.2003.0120

Lazar, C., Pintea, R., Keyser, R. D., 2007. Nonlinear predictive control of a pH process. Computer Aided Chemical Engineering 24, 829-834. https://doi.org/10.1016/S1570-7946(07)80161-1

Li, J., Xu, N. S., Su, W. W., 2003. Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochemical Engineering Journal 14, 51-65. https://doi.org/10.1016/S1369-703X(02)00135-3

Malek, A., Zullo, L. C., Daoutidis, P., 2016. Modeling and dynamic optimization of microalgae cultivation in outdoor open ponds. Industrial Engineering Chemical Research 55, 3327-3337. https://doi.org/10.1021/acs.iecr.5b03209

Marrafioti, G., Tebbani, S., Beauvois, D., Becerra, G., Isambert, A., Hovd, M., 2009. Unscented Kalman Filter state and parameter estimation in a photobioreactor for microalgae production. IFAC Proceedings Volumes 42, 804- 809. https://doi.org/10.3182/20090712-4-TR-2008.00131

McGinn, P. J., MacQuarrie, S. P., Choi, J., Tartakovsky, B., 2017. Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control. Bioprocess Biosystems Engineering 40, 63-71. https://doi.org/10.1007/s00449-016-1675-9

Mehar, J., Shekh, A., Nethravathy, M. U., Sarada, R., Chauhan, V. S., Mudliar, S., 2019. Automation of pilot-scale open raceway pond: A case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production. Journal of CO2 utilization 33, 384-393. https://doi.org/10.1016/j.jcou.2019.07.006

Mendoza, J. L., Granados, M. R., de Godos, I., Acién, F. G., Molina, E., Banks, C., Heaven, S., 2013a. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass and Bioenergy 54, 267-275. https://doi.org/10.1016/j.biombioe.2013.03.017

Mendoza, J. L., Granados, M. R., de Godos, I., Acién, F. G., Molina, E., Heaven, S., Banks, C., 2013b. Oxygen transfer and evolution in microalgal culture in open raceways. Bioresource Technology 137, 188-195. https://doi.org/10.1016/j.biortech.2013.03.127

Molina-Grima, E., Fernández-Sevilla, J. M., Sánchez-Pérez, J. A., García Camacho, F., 1996. A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. Journal of Biotechnology 45, 59-69. https://doi.org/10.1016/0168-1656(95)00144-1

Munoz-Tamayo, R., Martinon, P., Bougaran, G., Mairet, F., Bernard, O., 2014. Getting the most out of it: Optimal experiments for parameter estimation of microalgae growth models. Journal of Process Control 24, 991-1001. https://doi.org/10.1016/j.jprocont.2014.04.021

Norsker, N. H., Barbosa, M. J., Vermue, M. H., Wijffels, R. H., 2011. Microalgal production - a close look at the economics. Biotechnology Advances 29, 24-27.

https://doi.org/10.1016/j.biotechadv.2010.08.005

Oblak, S., Skrjanc, I., 2010. Continuous-time Wiener-model predictive control of a pH process based on a PWL approximation. Chemical Engineering Science 65, 1720-1728. https://doi.org/10.1016/j.ces.2009.11.008

Oswald, W. J., Golueke, C. G., 1968. Large-scale production of algae. In: Single-Cell Protein. The MIT Press, pp. 271-305.

Patti, M. A., Feroldi, D., Zumoffen, D., 2019. Control predictivo aplicado a un proceso de producción continua de biodiesel. Revista Iberoamericana de Automática e Informática Industrial 16, 296-307. https://doi.org/10.4995/riai.2019.10696

Pawlowski, A., Guzmán, J. L., Acién, F. G., Berenguel, M., Dormido, S., 2017. Event-based control systems for microalgae culture in industrial reactors. In: Prospects and Challenges in Algal Biotechnology. Springer, Ch. 7, pp. 1-48. https://doi.org/10.1007/978-981-10-1950-0

Pawlowski, A., Guzmán, J. L., Berenguel, M., Acién, F. G., 2019. Control system for pH in raceway photobioreactors based on Wiener models. IFACPapersOnLine 52, 928-933, 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019. https://doi.org/10.1016/j.ifacol.2019.06.181

Pawlowski, A., Mendoza, J. L., Guzmán, J. L., Berenguel, M., Acién, F. G., Dormido, S., 2014. Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresource Technology 170, 1-9. https://doi.org/10.1016/j.biortech.2014.07.088

Pawlowski, A., Mendoza, J. L., Guzmán, J. L., Berenguel, M., Acién, F. G., Dormido, S., 2015. Selective pH and dissolved oxygen control strategy for a raceway reactor within an event-based approach. Control Engineering Practice 44, 209-218. https://doi.org/10.1016/j.conengprac.2015.08.004

Peng, L., Lan, C. Q., Zhang, Z., 2013. Evolution, detrimental effects, and removal of oxygen in microalga cultures: A review. Environmental Progress & Sustainable Energy 32, 982-988. https://doi.org/10.1002/ep.11841

Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., 2017. Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renewable and Sustainable Energy Reviews 79, 248-254. https://doi.org/10.1016/j.rser.2017.05.064

Posten, C., 2009. Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences 9, 165-177. https://doi.org/10.1002/elsc.200900003

Putt, R., Singh, M., Chinnasamy, S., Das, K. C., 2011. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresource Technology 102, 3240-3245. https://doi.org/10.1016/j.biortech.2010.11.029

Richmond, A., 2004. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512, 33-37. https://doi.org/10.1023/B:HYDR.0000020365.06145.36

Rodríguez-Blanco, T., Sarabia, D., de Prada, C., 2018. Optimizacion en tiempo real utilizando la metodología de adaptacion de modificadores. Revista Iberoamericana de Automatica e Informatica Industrial 15, 133-144. https://doi.org/10.4995/riai.2017.8846

Rodríguez-Miranda, E., Acién, F. G., Guzmán, J. L., Berenguel, M., Visioli, A., 2019. Modelo de temperatura para reactores abiertos de microalgas. In: XL Jornadas de Automatica. Universidade da Coruña, Servizo de Publicacións, pp. 582-588. https://doi.org/10.17979/spudc.9788497497169.582

Rodríguez-Miranda, E., Beschi, M., Guzmán, J. L., Berenguel, M., Visioli, A., 2019. Daytime/nighttime event-based PI control for the pH of a microalgae raceway reactor. Processes 7, 1-16. https://doi.org/10.3390/pr7050247

Rodríguez-Miranda, E., Guzmán, J. L., Aci en, F. G., Berenguel, M., Visioli, A., 2020. Temperature regulation for microalgae raceway reactors based on liquid level optimization. Algal ResearchEn revision.

Romero-García, J. M., Guzmán, J. L., Moreno, J. C., Acién, F. G., Fernández-Sevilla, J. M., 2012. Filtered Smith Predictor to control pH during enzymatic hydrolysis of microalgae to produce L-aminoacids concentrates. Chemical Engineering Science 82, 121-131. https://doi.org/10.1016/j.ces.2012.07.024

Senthil-Kumar, A., Ahmad, Z., 2012. Model predictive control (MPC) and its current issues in chemical engineering. Chemical Engineering Communications 199, 472-511. https://doi.org/10.1080/00986445.2011.592446

Sompech, K., Chisti, Y., Srinophakun, T., 2014. Design of raceway ponds for producing microalgae. Biofuels 3, 387-397. https://doi.org/10.4155/bfs.12.39

Stepan, D., Shockey, R., Dorn, T. M. R., 2002. Carbon Dioxide Sequestering using Microalgae Systems. US Department of Energy, Pittsburgh, PA, USA.

Tang, D., Han, W., Li, P., Miao, X., Zhong, J., 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology 102, 3071-3076. https://doi.org/10.1016/j.biortech.2010.10.047

Tebbani, S., Lopes, F., Becerra-Celis, G., 2015. Nonlinear control of continuous cultures of Porphyridium purpureum in a photobioreactor. Chemical Engineering Science 123, 207-219. https://doi.org/10.1016/j.ces.2014.11.016

Tebbani, S., Titica, M., Caraman, S., Boillereaux, L., 2013. Estimation of Chlamydomonas reinhardtii growth in a torus photobioreactor. IFAC Proceedings Volumes 46, 72-77, 12th IFAC Symposium on Computer Applications in Biotechnology. https://doi.org/10.3182/20131216-3-IN-2044.00053

van Esbroeck, E., 2018. Temperature control of microalgae cultivation under variable conditions. MSc Thesis: Biobased Chemistry and Technology - Wageningen University.

Wang, Z., Wen, X., Xu, Y., Ding, Y., Geng, Y., Li, Y., 2018. Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp.WBG1 via CO2-regulated pH in indoor and outdoor open reactors. Science of the Total Environment 619-620, 827-833. https://doi.org/10.1016/j.scitotenv.2017.10.127

Weissman, C. J., Goebel, R. P., Benemann, J. R., 1988. Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation. Biotechnology and Bioengineering 31, 336-344. https://doi.org/10.1002/bit.260310409

Xin, L., Hong-ying, H., Ke, G., Ying-xue, S., 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology 101, 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem