- -

Planificación de trayectorias en sistemas multirobot utilizando redes de Petri. Resultados y problemas abiertos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Planificación de trayectorias en sistemas multirobot utilizando redes de Petri. Resultados y problemas abiertos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mahulea, C. es_ES
dc.contributor.author González, R. es_ES
dc.contributor.author Montijano, E. es_ES
dc.contributor.author Silva, M. es_ES
dc.date.accessioned 2021-02-02T13:43:06Z
dc.date.available 2021-02-02T13:43:06Z
dc.date.issued 2020-12-23
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/160489
dc.description.abstract [EN] This paper presents a trajectory planning approach in multirobot systems based on Petri net models. This type of models is very useful for high-level specifications since, in this case, the classical planning methods (potential functions, RRT algorithms, RRT*) cannot be used being dicult to determine a priori the sequence of configurations for each robot. This work presents the formal definition of the Robot Motion Petri net t hat i s obtained from a partition of the environment in cells. Using the s tructure of the Petri net, in case of specifications defined as Boolean or Linear Temporal Logic (LTL) formulas, dierent optimization problems are presented that can be used to obtain trajectories for robots. The main advantage of models based on Petri nets is their scalability with respect to the number of robots. This makes it possible to reciently solve planning problems with a large number of robots. In the second part of the paper, some extensions and new results for distributed planning in unknown environments and with partial communications between robots are presented. es_ES
dc.description.abstract [ES] Este trabajo presenta una estrategia de planificacón de trayectorias en equipos de robots moviles basada en el uso de modelos definidos con redes de Petri. Estos tipos de modelos son muy útiles para especificaciones de alto nivel ya que, en este caso, los métodos clásicos de planificación (funciones potenciales, algoritmos RRT, RRT*) no se pueden utilizar, siendo difícil determinar a priori la secuencia de configuraciones para cada robot. Este trabajo presenta la definición formal de la Red de Petri de Movimiento de Robots que se obtiene a partir de una partición del entorno en celdas. Utilizando la estructura de la red de Petri, en caso de especificaciones definidas como fórmulas Booleanas o fórmulas en lógica temporal lineal (LTL), se presentan diferentes problemas de optimización que se pueden utilizar para obtener trayectorias para los robots. La principal ventaja de los modelos basados en redes de Petri es su escalabilidad con respecto al número de robots. Ello permite resolver con eficiencia problemas de planificación de equipos con un número grande de robots. En la segunda parte del trabajo, se presentan algunas extensiones y resultados nuevos para la planificación distribuida en entornos desconocidos y con comunicaciones parciales entre los robots. es_ES
dc.description.sponsorship Los resultados de esta línea de investigación son fruto de la participación de varios compañeros, investigadores de la Universidad de Zaragoza y de otras Universidades extranjeras. Queremos agradecer la participación de todos ellos, mencionando muy especialmente a Marius Kloetzer (profesor de la Universidad Técnica de Iasi, Rumanía). Este trabajo ha sido financiado parcialmente por los proyectos PGC2018-098719-B-I00 and PGC2018-098817-A-I00 (MCIU/AEI/FEDER, UE) y la ONR Global NICOP grant N62909-19-1-2027. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Path planning es_ES
dc.subject Multirobot systems es_ES
dc.subject Discrete event systems es_ES
dc.subject Petri nets es_ES
dc.subject Planificación de trayectorias es_ES
dc.subject Sistemas multirobot es_ES
dc.subject Sistemas de eventos discretos es_ES
dc.subject Redes de Petri es_ES
dc.title Planificación de trayectorias en sistemas multirobot utilizando redes de Petri. Resultados y problemas abiertos es_ES
dc.title.alternative Path planning of multirobot systems using Petri net models. Results and open problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.13785
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-098719-B-I00/ES/SISTEMAS FLEXIBLES MULTIROBOT PARA COBERTURA Y TRANSPORTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-098817-A-I00/ES/ANALISIS MULTIMODAL DE ESCENAS PARA APLICACIONES DE MONITORIZACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N62909-19-1-2027/US/ONRG-NICOP: DISTRIBUTED HIGH-LEVEL SCENE REASONING WITH TEAMS OF HETEROGENEOUS ROBOTS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mahulea, C.; González, R.; Montijano, E.; Silva, M. (2020). Planificación de trayectorias en sistemas multirobot utilizando redes de Petri. Resultados y problemas abiertos. Revista Iberoamericana de Automática e Informática industrial. 18(1):19-31. https://doi.org/10.4995/riai.2020.13785 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.13785 es_ES
dc.description.upvformatpinicio 19 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\13785 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Baier, C., Katoen, J.P., 2008. Principles of model checking. MIT Press. es_ES
dc.description.references Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G.-J., 2007. Symbolic planning and control of robot motion. IEEE Robotics and Automation Magazine 14 (1), 61-71. https://doi.org/10.1109/MRA.2007.339624 es_ES
dc.description.references Belta, C., Habets, L., 2006. Controlling a class of nonlinear systems on rectangles. IEEE Transactions on Automatic Control 51 (11), 1749-1759. https://doi.org/10.1109/TAC.2006.884957 es_ES
dc.description.references Brown, F., 2012. Boolean Reasoning: The Logic of Boolean Equations, 2nd Edition. Dover Publications. es_ES
dc.description.references Castellanos, J. G., Cervantes, M. V., Santana, J. S., Martínez, S. R., 2014. Seguimiento de trayectorias de un robot movil (3,0) mediante control acotado. Rev. Iberoamericana de Automatica e Informática industrial 11 (4), 426-434. https://doi.org/10.1016/j.riai.2014.09.005 es_ES
dc.description.references Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., Thrun, S., 2005. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston. es_ES
dc.description.references Clarke, E.-M.-M., Peled, D., Grumberg, O., 1999. Model checking. MIT Press. es_ES
dc.description.references DeCastro, J., Ehlers, R., Runggers, M., Balkan, A., Kress-Gazit, H., 2016. Automated generation of dynamics-based runtime certificates for high-level control. Discrete Event Dynamic Systems 27 (2), 371-405. https://doi.org/10.1007/s10626-016-0232-7 es_ES
dc.description.references Ding, X., Smith, S.-L., Belta, C., Rus, D., 2014. Optimal control of Markov decision processes with linear temporal logic constraints. IEEE Transactions on Automatic Control 59 (5), 1244-1257. https://doi.org/10.1109/TAC.2014.2298143 es_ES
dc.description.references Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L., 2016. Spot 2.0 - a framework for ltl and ω-automata manipulation. In: Proc. of ATVA'16. pp. 122-129. https://doi.org/10.1007/978-3-319-46520-3_8 es_ES
dc.description.references Fainekos, G. E., Girard, A., Kress-Gazit, H., Pappas, G. J., 2009. Temporal logic motion planning for dynamic robots. Automatica 45 (2), 343-352. https://doi.org/10.1016/j.automatica.2008.08.008 es_ES
dc.description.references Garrido, S., Moreno, L., Gomez, J.-V., Lima, P.-U., 2013. International Journal ' of Advanced Robotic Systems 10 (1), 64. https://doi.org/10.5772/53999 es_ES
dc.description.references Gastin, P., Oddoux, D., 2001. Fast ltl to buchi automata translation. In: Proc. of the 13th Conference on Computer Aided Verification (CAV). pp. 53-65. https://doi.org/10.1007/3-540-44585-4_6 es_ES
dc.description.references Gonzalez, R., Mahulea, C., Kloetzer, M., 2015. A Matlab-Based Interactive Simulator for Mobile Robotics. In: IEEE CASE'2015: Int. Conf. on Autom. Science and Engineering. Gothenburg, Sweden, pp. 310-315. https://doi.org/10.1109/CoASE.2015.7294097 es_ES
dc.description.references Gonzalez, R., Rodriguez, F., Guzman, J. L., 2014. Autonomous Tracked Robots in Planar Off-Road Conditions. Modelling, Localization and Motion Control. Series: Studies in Systems, Decision and Control. Springer. https://doi.org/10.1007/978-3-319-06038-5 es_ES
dc.description.references Guo, M., Dimarogonas, D.-V., 2015. Multi-agent plan reconfiguration under local LTL specifications. Int. Journal of Robotics Research 34 (2), 218-235. https://doi.org/10.1177/0278364914546174 es_ES
dc.description.references Habets, L. C. G. J. M., Collins, P. J., van Schuppen, J. H., 2006. Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on Automatic Control 51, 938-948. https://doi.org/10.1109/TAC.2006.876952 es_ES
dc.description.references Julian, B.-J., Angermann, M., Schwager, M., Rus, D., 2012. Distributed robotic sensor networks: An information-theoretic approach. The International Journal of Robotics Research 31 (10), 1134-1154. https://doi.org/10.1177/0278364912452675 es_ES
dc.description.references Kloetzer, M., Mahulea, C., 2014. A Petri net based approach for multi-robot path planning. Discrete Event Dynamic Systems: Theory and Applications 24 (4), 417-445. https://doi.org/10.1007/s10626-013-0162-6 es_ES
dc.description.references Kloetzer, M., Mahulea, C., 2014. An assembly problem with mobile robots. In: ETFA'2014: IEEE Emerging Technology and Factory Automation. pp. 1-7. https://doi.org/10.1109/ETFA.2014.7005116 es_ES
dc.description.references Kloetzer, M., Mahulea, C., 2015. LTL-based planning in environments with probabilistic observations. IEEE Transactions on Automation Science and Engineering 12 (4), 1407-1420. https://doi.org/10.1109/TASE.2015.2454299 es_ES
dc.description.references Kloetzer, M., Mahulea, C., 2020. Path planning for robotic teams based on LTL specifications and Petri net models. Discrete Event Dynamic Systems: Theory and Applications 30 (1), 55-79. https://doi.org/10.1007/s10626-019-00300-1 es_ES
dc.description.references Lacerda, B., Lima, P. U., 2019. Petri net based multi-robot task coordination from temporal logic specifications. Robotics and Autonomous Systems 122, 343-352. https://doi.org/10.1016/j.robot.2019.103289 es_ES
dc.description.references LaValle, S. M., 2006. Planning Algorithms. Cambridge, available at http://planning.cs.uiuc.edu. https://doi.org/10.1017/CBO9780511546877 es_ES
dc.description.references Leahy, K., Cristofalo, E., Vasile, C.-I., Jones, A., Montijano, E., Schwager, M., Belta, C., 2019. Control in belief space with temporal logic specifications using vision-based localization. The International Journal of Robotics Research 38 (6), 702-722. https://doi.org/10.1177/0278364919846340 es_ES
dc.description.references Mahulea, C., Kloetzer, M., 2018. Robot Planning based on Boolean Specifications using Petri Net Models. IEEE Trans. on Automatic Control 63 (7), 2218-2225. https://doi.org/10.1109/TAC.2017.2760249 es_ES
dc.description.references Mahulea, C., Kloetzer, M., Gonzalez, R., 2020a. Path Planning of Cooperative ' Mobile Robots Using Discrete Event Models. IEEE Wiley. https://doi.org/10.1002/9781119486305 es_ES
dc.description.references Mahulea, C., Kloetzer, M., Lesage, J.-J., 2020b. Multi-robot path planning with boolean specifications and collision avoidance. In: WODES'2020: 15th Workshop on Discrete Event Systems. es_ES
dc.description.references Mahulea, C., Montijano, E., Kloetzer, M., 2020c. Distributed Multirobot Path Planning in Unknown Maps Using Petri Net Models. IFACPapersOnLine21th IFAC World Congress. es_ES
dc.description.references Mesbahi, M., Egerstedt, M., 2010. Graph theoretic methods in multiagent networks. Princeton University Press. https://doi.org/10.1515/9781400835355 es_ES
dc.description.references Montijano, E., Montijano, J.-I., Sagues, C., Feb 2013. Chebyshev polynomials in distributed consensus applications. IEEE Transactions on Signal Processing 61 (3), 693-706. https://doi.org/10.1109/TSP.2012.2226173 es_ES
dc.description.references Montijano, E., Sagües, C., 2015. Distributed consensus with visual perception ' in multi-robot systems. Springer. https://doi.org/10.1007/978-3-319-15699-6 es_ES
dc.description.references Parrilla, L., Mahulea, C., Kloetzer, M., 2017. RMTool: Recent Enhancements. IFAC-PapersOnLine 50 (1), 5824 - 5830, 20th IFAC World Congress. https://doi.org/10.1016/j.ifacol.2017.08.539 es_ES
dc.description.references Schillinger, P., Burger, M., Dimarogonas, D., 2018. Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems. The International Journal of Robotics Research 37 (7), 818-838. https://doi.org/10.1177/0278364918774135 es_ES
dc.description.references Siegwart, R., Nourbakhsh, I., 2004. Introduction to Autonomous Mobile Robots, First Edition. A Bradford book. The MIT Press, USA. Silva, M., 1985. Las Redes de Petri : en la Automatica y la Informática; 1a ed. Editorial AC Madrid. es_ES
dc.description.references Silva, M., Colom, J.-M., 1988. On the Computation of Structural Synchronic Invariants in P/T Nets. Advances in Petri Nets'87 340, 386-417. https://doi.org/10.1007/3-540-50580-6_39 es_ES
dc.description.references Silva, M., Teruel, E., Colom, J.-M., 1998. Linear Algebraic and Linear Programming Techniques for the Analysis of P/T Net Systems. Lecture on Petri Nets I: Basic Models 1491, 309-373. https://doi.org/10.1007/3-540-65306-6_19 es_ES
dc.description.references Tumova, J., Dimarogonas, D., 2016. Multi-agent planning under local LTL specifications and event-based synchronization. Automatica 70, 239-248. https://doi.org/10.1016/j.automatica.2016.04.006 es_ES
dc.description.references Ulusoy, A., Smith, S., Ding, X., Belta, C., 2012. Robust multi-robot optimal path planning with temporal logic constraints. In: ICRA 2012: IEEE Conference on Robotics and Automation. pp. 4693-4698. https://doi.org/10.1109/ICRA.2012.6224792 es_ES
dc.description.references Wolper, P., Vardi, M., Sistla, A., 1983. Reasoning about infinite computation paths. In: Proc. of the 24th IEEE Symposium on Foundations of Computer Science. pp. 185-194. https://doi.org/10.1109/SFCS.1983.51 es_ES
dc.description.references Yen, J.-Y., 1971. Finding the k shortest loopless paths in a network. Management Science 17 (11), 712-716. https://doi.org/10.1287/mnsc.17.11.712 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem