- -

Modelado y control con compensación de fricción de un sistema pendubot

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado y control con compensación de fricción de un sistema pendubot

Mostrar el registro completo del ítem

Soto, I.; Campa, R.; Sánchez-Mazuca, S. (2020). Modelado y control con compensación de fricción de un sistema pendubot. Revista Iberoamericana de Automática e Informática industrial. 18(1):39-47. https://doi.org/10.4995/riai.2020.13083

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160617

Ficheros en el ítem

Metadatos del ítem

Título: Modelado y control con compensación de fricción de un sistema pendubot
Otro titulo: Modeling and control with friction compensation of a pendubot system
Autor: Soto, I. Campa, R. Sánchez-Mazuca, S.
Fecha difusión:
Resumen:
[EN] The pendubot is a two degree of freedom mechanical underactuated system that is used as an educational and research platform in the areas of robotics and control. It is considered as an  underactuated system because ...[+]


[ES] El pendubot es un sistema mecánico subactuado de dos grados de libertad que comúnmente se utiliza como plataforma educacional y de investigación en las áreas de robótica y control. Se le considera como un sistema ...[+]
Palabras clave: Modelado , Control , Fricción , Compensación , Sistemas mecánicos , Modelling , Friction , Compensation , Mechanical systems
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2020.13083
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2020.13083
Agradecimientos:
Este trabajo fue apoyado parcialmente por el Tecnológico Nacional de México y la Universidad Autónoma de Ciudad Juárez.
Tipo: Artículo

References

Armstrong-Helouvry, B., 1991. Control of Machines with Friction. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-3972-8

Canudas de Wit, C., Olson, H., Astrom, K., Lischinsky, P., 1995. A new model for control of system with friction. IEEE Transactions on Automatic Control 40, 419-425. https://doi.org/10.1109/9.376053

Courtney-Pratt, J., Eisner, E., 1957. The effect of a tangential force on the contact of metallic bodies. Proceedings of the Royal Society A 238, 529-550. https://doi.org/10.1098/rspa.1957.0016 [+]
Armstrong-Helouvry, B., 1991. Control of Machines with Friction. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-3972-8

Canudas de Wit, C., Olson, H., Astrom, K., Lischinsky, P., 1995. A new model for control of system with friction. IEEE Transactions on Automatic Control 40, 419-425. https://doi.org/10.1109/9.376053

Courtney-Pratt, J., Eisner, E., 1957. The effect of a tangential force on the contact of metallic bodies. Proceedings of the Royal Society A 238, 529-550. https://doi.org/10.1098/rspa.1957.0016

Dahl, P., 1968. A solid friction model. Technical report TOR-0158(3107-18)-1, The Aerospace Corporation. https://doi.org/10.21236/ADA041920

Fantoni, I., Lozano, R., Spong, M. W., 2000. Energy based control of the pendubot. IEEE Transactions on Automatic Control 45, 79-86. https://doi.org/10.1109/9.847110

Guemghar, K., 2005. On the use of input-output feedback linearization techniques for the control of nonminimum-phase systems. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.

Johannes, V. I., Green, M. A., Brockley, C. A., 1973. The role of the rate of application of the tangential force in determining the static friction coefficient. Wear 24, 381-385. https://doi.org/10.1016/0043-1648(73)90166-X

Ma, X. Q., Su, C. Y., 2002. A new fuzzy approach for swing up control of pendubot. In: Proceedings of the American Control Conference. Anchorage, AK, USA.

Morin, A., 1833. New friction experiments carried out at Metz in 1831-1833. Proceedings of the French Royal Academy of Sciences 4, 1-128.

O'Flaherty, R. W., Sanfelice, R. G., Teel, A. R., 2008. Hybrid control strategy for robust global swing-up of the pendubot. In: Proceedings of the American Control Conference. Seattle, WA, USA. https://doi.org/10.1109/ACC.2008.4586692

Rabinowics, E., 1956. Stick and slip. Scientific American 194, 109-118. https://doi.org/10.1038/scientificamerican0256-109

Sanchez-Mazuca, S., Campa, R., 2013. An improvement proposal to the static friction model. Mathematical Problems in Engineering 2013. https://doi.org/10.1155/2013/946526

Sanchez-Mazuca, S., Soto, I., Campa, R., 2015. Modeling and control of a pendubot with static friction. In: Cecarelli, M., Hernandez Martínez, E. E. (Eds.), Multibody Mechatronic Systems: Proceedings of the MUSME Conference held in Huatulco, Mexico, October 21-24, 2014. Springer, pp. 229- 240. https://doi.org/10.1007/978-3-319-09858-6_22

Spong, M. W., Block, D. J., 1995. The pendubot: a mechatronic system for control research and education. In: Proceedings of the IEEE Conference on Decision and Control. New Orleans, LA, USA.

Stribeck, R., 1902. The key qualities of sliding and rolling bearings. (in German) Zeitschrift Des Vereins Deutscher Ingenieure 46, 1342-1348.

Wang, W., Yi, J., Zhao, D., Liu, X., 2004. Adaptive sliding mode controller for an underactuated manipulator. In: Proceedings of the International Conference on Machine Learning and Cybernetics. Shangai, China.

Xin, X., Kaneda, M., Oki, T., 2002. The swing-up control for the pendubot based on energy control approach. In: Proceeding of the IFAC World Congress. Barcelona, Spain. https://doi.org/10.3182/20020721-6-ES-1901.00889

Zhang, M. J., Tarn, T. J., 2002. Hybrid control of the pendubot. IEEE Transactions on Mechatronics 7, 79-86. https://doi.org/10.1109/3516.990890

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem