- -

Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monserrat López, Andrea es_ES
dc.contributor.author Miguel Sosa, Pedro es_ES
dc.contributor.author Bonet Senach, José Luís es_ES
dc.contributor.author Fernández Prada, Miguel Ángel es_ES
dc.date.accessioned 2021-02-11T04:32:26Z
dc.date.available 2021-02-11T04:32:26Z
dc.date.issued 2020-03-15 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161053
dc.description.abstract [EN] Continuous reinforced concrete (RC) beams may develop significant plastic rotations to enable the redistribution of bending moments. These rotations occur at plastic hinges, which are subject to high shear forces. The influence of rotations on the shear strength for statically determined beams without shear reinforcement failing in shear after yielding of the flexural reinforcement has already been experimentally verified. However, this influence has not been studied in continuous members with shear reinforcement. An innovative tests system has been specially designed to develop shear failures before and after yielding of the flexural reinforcement in both statically determinate and indeterminate structures. Nine beams (9000 mm long, 250 mm wide, 450 mm high) with a shear reinforcement of phi 8/30 (rho(w) = 0.13%) and different longitudinal reinforcement ratios were tested under different load and support conditions. The shear strength provided by shear reinforcement and that provided by the other mechanisms of resistance (shear strength provided by concrete) for each specimen were calculated based on the critical shear crack width measurements performed by Digital Image Correlation (DIC). Bending rotation and crack rotation along the development length of the critical shear crack were also obtained by DIC. Based on the test results, the shear strength provided by concrete was studied in relation to the bending rotation and the average crack width in reinforced concrete beams with shear reinforcement. It was confirmed that the shear strength provided by concrete decreased with increasing both bending rotations and crack widths. The shear strength values predicted by different design codes (ACI 318-19, Eurocode 2 and Model Code 2010) were compared with the test results, and showed that these formulations did not properly capture the loss of shear strength caused by bending rotation. es_ES
dc.description.sponsorship This research was funded with grants from the Spanish Ministry of Economy and Competitiveness to Research Project BIA2015-64672-C4-4-R. The experimental programme was developed in the Laboratory of Concrete of the Institute of Concrete Science and Technology (ICITECH) of the Universitat Politecnica de Valencia (UPV), with concrete supplied by Caplansa. Andrea Monserrat was supported by the Conselleria d'Educacio, Investigacio, Cultura i Esport of the Generalitat Valenciana (Order 6/2015, DOCV no. 7615 15.09.2015) with European Regional Development Funds (ERDF) allocated by the EU. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Shear test es_ES
dc.subject Shear strength es_ES
dc.subject Reinforced concrete es_ES
dc.subject Continuous beam es_ES
dc.subject Shear reinforcement es_ES
dc.subject Plastic hinge es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2020.110242 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-64672-C4-4-R/ES/EVALUACION EXPERIMENTAL DE VIGAS CONTINUAS PRETENSADAS, CON Y SIN REFUERZO, Y PIEZAS COMPUESTAS DE DOS HORMIGONES, PARA LA EXTENSION DE SU VIDA UTIL./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Monserrat López, A.; Miguel Sosa, P.; Bonet Senach, JL.; Fernández Prada, MÁ. (2020). Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement. Engineering Structures. 207:1-14. https://doi.org/10.1016/j.engstruct.2020.110242 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2020.110242 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 207 es_ES
dc.relation.pasarela S\406584 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lopes, S. M., & do Carmo, R. N. F. (2006). Deformable strut and tie model for the calculation of the plastic rotation capacity. Computers & Structures, 84(31-32), 2174-2183. doi:10.1016/j.compstruc.2006.08.028 es_ES
dc.description.references Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a Consistent Design of Structural Concrete. PCI Journal, 32(3), 74-150. doi:10.15554/pcij.05011987.74.150 es_ES
dc.description.references Vecchio, F. J. (2000). Disturbed Stress Field Model for Reinforced Concrete: Formulation. Journal of Structural Engineering, 126(9), 1070-1077. doi:10.1061/(asce)0733-9445(2000)126:9(1070) es_ES
dc.description.references Leondardt, F. (1965). Reducing the shear reinforcement in reinforced concrete beams and slabs. Magazine of Concrete Research, 17(53), 187-198. doi:10.1680/macr.1965.17.53.187 es_ES
dc.description.references Walraven, J. C. (1981). Fundamental Analysis of Aggregate Interlock. Journal of the Structural Division, 107(11), 2245-2270. doi:10.1061/jsdeag.0005820 es_ES
dc.description.references Dei Poli, S., Di Prisco, M., & Gambarova, P. G. (1990). Stress Field in Web of RC Thin‐Webbed Beams Failing in Shear. Journal of Structural Engineering, 116(9), 2496-2514. doi:10.1061/(asce)0733-9445(1990)116:9(2496) es_ES
dc.description.references Campana, S., Fernández Ruiz, M., Anastasi, A., & Muttoni, A. (2013). Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine of Concrete Research, 65(6), 386-404. doi:10.1680/macr.12.00142 es_ES
dc.description.references Fernández Ruiz, M., Muttoni, A., & Sagaseta, J. (2015). Shear strength of concrete members without transverse reinforcement: A mechanical approach to consistently account for size and strain effects. Engineering Structures, 99, 360-372. doi:10.1016/j.engstruct.2015.05.007 es_ES
dc.description.references Cavagnis, F., Fernández Ruiz, M., & Muttoni, A. (2017). An analysis of the shear-transfer actions in reinforced concrete members without transverse reinforcement based on refined experimental measurements. Structural Concrete, 19(1), 49-64. doi:10.1002/suco.201700145 es_ES
dc.description.references Muttoni, A., Fernández Ruiz, M., & Simões, J. T. (2017). The theoretical principles of the critical shear crack theory for punching shear failures and derivation of consistent closed-form design expressions. Structural Concrete, 19(1), 174-190. doi:10.1002/suco.201700088 es_ES
dc.description.references Marí, A., Cladera, A., Bairán, J., Oller, E., & Ribas, C. (2014). Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads. Frontiers of Structural and Civil Engineering, 8(4), 337-353. doi:10.1007/s11709-014-0081-0 es_ES
dc.description.references Fédération International du Béton (fib). Model Code 2010. Ernst & Sohn; 2012. es_ES
dc.description.references CEN, EN 1992-1-1:2004. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; 2004. es_ES
dc.description.references UNE EN-12390-3:2009. “Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión del hormigón endurecido; 2009. es_ES
dc.description.references UNE EN-12390-6:2010. Ensayos de hormigón endurecido. Parte 6: Resistencia a tracción indirecta de probetas; 2010. es_ES
dc.description.references UNE EN-12390-13:2014. Ensayos de hormigón endurecido. Parte 13: Determinación del módulo secante de elasticidad en compression; 2014. es_ES
dc.description.references UNE-EN ISO 6892-1:2017. Materiales metálicos. Ensayo de tracción. Parte 1: Ensayo a temperatura ambiente; 2017. es_ES
dc.description.references Huber, P., Huber, T., & Kollegger, J. (2016). Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Engineering Structures, 113, 41-58. doi:10.1016/j.engstruct.2016.01.025 es_ES
dc.description.references Simões, J. T., Fernández Ruiz, M., & Muttoni, A. (2018). Validation of the Critical Shear Crack Theory for punching of slabs without transverse reinforcement by means of a refined mechanical model. Structural Concrete, 19(1), 191-216. doi:10.1002/suco.201700280 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem