- -

Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement

Mostrar el registro completo del ítem

Monserrat López, A.; Miguel Sosa, P.; Bonet Senach, JL.; Fernández Prada, MÁ. (2020). Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement. Engineering Structures. 207:1-14. https://doi.org/10.1016/j.engstruct.2020.110242

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161053

Ficheros en el ítem

Metadatos del ítem

Título: Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement
Autor: Monserrat López, Andrea Miguel Sosa, Pedro Bonet Senach, José Luís Fernández Prada, Miguel Ángel
Entidad UPV: Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Continuous reinforced concrete (RC) beams may develop significant plastic rotations to enable the redistribution of bending moments. These rotations occur at plastic hinges, which are subject to high shear forces. The ...[+]
Palabras clave: Shear test , Shear strength , Reinforced concrete , Continuous beam , Shear reinforcement , Plastic hinge
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Engineering Structures. (issn: 0141-0296 )
DOI: 10.1016/j.engstruct.2020.110242
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.engstruct.2020.110242
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2015-64672-C4-4-R/ES/EVALUACION EXPERIMENTAL DE VIGAS CONTINUAS PRETENSADAS, CON Y SIN REFUERZO, Y PIEZAS COMPUESTAS DE DOS HORMIGONES, PARA LA EXTENSION DE SU VIDA UTIL./
Agradecimientos:
This research was funded with grants from the Spanish Ministry of Economy and Competitiveness to Research Project BIA2015-64672-C4-4-R. The experimental programme was developed in the Laboratory of Concrete of the Institute ...[+]
Tipo: Artículo

References

Lopes, S. M., & do Carmo, R. N. F. (2006). Deformable strut and tie model for the calculation of the plastic rotation capacity. Computers & Structures, 84(31-32), 2174-2183. doi:10.1016/j.compstruc.2006.08.028

Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a Consistent Design of Structural Concrete. PCI Journal, 32(3), 74-150. doi:10.15554/pcij.05011987.74.150

Vecchio, F. J. (2000). Disturbed Stress Field Model for Reinforced Concrete: Formulation. Journal of Structural Engineering, 126(9), 1070-1077. doi:10.1061/(asce)0733-9445(2000)126:9(1070) [+]
Lopes, S. M., & do Carmo, R. N. F. (2006). Deformable strut and tie model for the calculation of the plastic rotation capacity. Computers & Structures, 84(31-32), 2174-2183. doi:10.1016/j.compstruc.2006.08.028

Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a Consistent Design of Structural Concrete. PCI Journal, 32(3), 74-150. doi:10.15554/pcij.05011987.74.150

Vecchio, F. J. (2000). Disturbed Stress Field Model for Reinforced Concrete: Formulation. Journal of Structural Engineering, 126(9), 1070-1077. doi:10.1061/(asce)0733-9445(2000)126:9(1070)

Leondardt, F. (1965). Reducing the shear reinforcement in reinforced concrete beams and slabs. Magazine of Concrete Research, 17(53), 187-198. doi:10.1680/macr.1965.17.53.187

Walraven, J. C. (1981). Fundamental Analysis of Aggregate Interlock. Journal of the Structural Division, 107(11), 2245-2270. doi:10.1061/jsdeag.0005820

Dei Poli, S., Di Prisco, M., & Gambarova, P. G. (1990). Stress Field in Web of RC Thin‐Webbed Beams Failing in Shear. Journal of Structural Engineering, 116(9), 2496-2514. doi:10.1061/(asce)0733-9445(1990)116:9(2496)

Campana, S., Fernández Ruiz, M., Anastasi, A., & Muttoni, A. (2013). Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine of Concrete Research, 65(6), 386-404. doi:10.1680/macr.12.00142

Fernández Ruiz, M., Muttoni, A., & Sagaseta, J. (2015). Shear strength of concrete members without transverse reinforcement: A mechanical approach to consistently account for size and strain effects. Engineering Structures, 99, 360-372. doi:10.1016/j.engstruct.2015.05.007

Cavagnis, F., Fernández Ruiz, M., & Muttoni, A. (2017). An analysis of the shear-transfer actions in reinforced concrete members without transverse reinforcement based on refined experimental measurements. Structural Concrete, 19(1), 49-64. doi:10.1002/suco.201700145

Muttoni, A., Fernández Ruiz, M., & Simões, J. T. (2017). The theoretical principles of the critical shear crack theory for punching shear failures and derivation of consistent closed-form design expressions. Structural Concrete, 19(1), 174-190. doi:10.1002/suco.201700088

Marí, A., Cladera, A., Bairán, J., Oller, E., & Ribas, C. (2014). Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads. Frontiers of Structural and Civil Engineering, 8(4), 337-353. doi:10.1007/s11709-014-0081-0

Fédération International du Béton (fib). Model Code 2010. Ernst & Sohn; 2012.

CEN, EN 1992-1-1:2004. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; 2004.

UNE EN-12390-3:2009. “Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión del hormigón endurecido; 2009.

UNE EN-12390-6:2010. Ensayos de hormigón endurecido. Parte 6: Resistencia a tracción indirecta de probetas; 2010.

UNE EN-12390-13:2014. Ensayos de hormigón endurecido. Parte 13: Determinación del módulo secante de elasticidad en compression; 2014.

UNE-EN ISO 6892-1:2017. Materiales metálicos. Ensayo de tracción. Parte 1: Ensayo a temperatura ambiente; 2017.

Huber, P., Huber, T., & Kollegger, J. (2016). Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Engineering Structures, 113, 41-58. doi:10.1016/j.engstruct.2016.01.025

Simões, J. T., Fernández Ruiz, M., & Muttoni, A. (2018). Validation of the Critical Shear Crack Theory for punching of slabs without transverse reinforcement by means of a refined mechanical model. Structural Concrete, 19(1), 191-216. doi:10.1002/suco.201700280

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem