- -

Benchmark de control de la orientación de un multirrotor en una estructura de rotación con tres grados de libertad

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Benchmark de control de la orientación de un multirrotor en una estructura de rotación con tres grados de libertad

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rico-Azagra, J. es_ES
dc.contributor.author Gil-Martínez, M. es_ES
dc.contributor.author Rico, R. es_ES
dc.contributor.author Nájera, S. es_ES
dc.contributor.author Elvira, C. es_ES
dc.date.accessioned 2021-07-07T08:38:30Z
dc.date.available 2021-07-07T08:38:30Z
dc.date.issued 2021-07-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/168909
dc.description.abstract [EN] A fully equipped quadrotor is attached to a structure that allows free rotation without translation. Additionally, a set of MATLAB-Simulink® tools execute the flight controller programming and manage the real-time transmission of commands and flight states for the remote pilot. For this test bench a simulator is offered. It faithfully reproduces the behaviour of the real system in order to propose a benchmark on Control Engineering. This aims to control the quadrotor orientation described using the Euler angles. Thus the three control actions that attack the propulsion system must be generated taking into account the rotation speeds and angles that are estimated by the navigation system and the angle set points. During the performance tests, a modifiable supply voltage replaces the battery charge level and a control action emulates the height control, resulting in dierent operating points of the system as in a real flight. The simulator allows free setup of closed and open loop experiments for model identification tasks or analysing the control performance for dierent inputs and operating points. The final objective is to incorporate a control law that improves the behaviour given as a reference for a certain experiment. After a simulation, an evaluation function quantifies the dierences in tracking error and control action between the current control and the reference control for each degree of freedom. The main challenge is a narrow control bandwidth to govern a complex three-variable system. es_ES
dc.description.abstract [ES] Un cuatrirrotor con todo el equipamiento de vuelo se encuentra fijado a una estructura que permite la rotación en el espacio sin desplazamiento. Además, un conjunto de herramientas software desarrolladas con MATLAB-Simulink® ejecutan la programación de su controladora y gestionan la transmisión en tiempo real de consignas y estados del vuelo pilotado remotamente. Para este banco de pruebas se ofrece un simulador que reproduce fielmente el comportamiento del sistema real con el fin de plantear un benchmark de Ingeniería de Control. El problema propuesto es controlar la orientación del mutirrotor definida por los ángulos de Euler. Para ello, deben generarse las tres acciones de control que atacan al sistema de propulsión, considerando las velocidades y ángulos que estima el sistema de navegacion y las consignas angulares. Para lograr un mayor realismo, en las pruebas de comportamiento se pueden modificar la tensión de alimentación, que simula el nivel de carga de la batería, y una acción de control que emula el control de la altura, lo que da lugar a diferentes puntos de operación. El simulador permite configurar experimentos en lazo abierto o cerrado, para tareas de identificación o para analizar el comportamiento de los controladores en diferentes puntos de operación y ante diferentes entradas. El objetivo final es incorporar una ley de control que mejore el comportamiento dado como referencia para cierto experimento. Tras una simulación, una función de evaluación cuantifica las diferencias en el error de seguimiento y en la acción de control entre el control actual y el de referencia para cada grado de libertad. El principal desafío es optimizar el reducido ancho de banda disponible para controlar un sistema dinámico complejo. es_ES
dc.description.sponsorship Los autores agradecen la ayuda prestada por el Gobierno de La Rioja a través del proyecto de I+D ADER 2017-I-IDD00035, y por la Universidad de La Rioja a través de la Ayuda para la realización de Proyectos de Innovación Docente 2020 PID Nº 36 y la Ayuda a Grupos de Investigación REGI2020 /23. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Unmanned Aerial Vehicles (UAVs) es_ES
dc.subject Attitude control es_ES
dc.subject Control education es_ES
dc.subject Simulator es_ES
dc.subject Testbed es_ES
dc.subject Vehículo aéreo no tripulado (VANT) es_ES
dc.subject Control de actitud es_ES
dc.subject Educación en control es_ES
dc.subject Simulador es_ES
dc.subject Banco de pruebas es_ES
dc.title Benchmark de control de la orientación de un multirrotor en una estructura de rotación con tres grados de libertad es_ES
dc.title.alternative A benchmark for orientation control of a multirotor in a three degrees-of-freedom rotation structure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.14356
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de La Rioja//ADER 2017-I-IDD00035/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Unirioja//REGI2020%2F23/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rico-Azagra, J.; Gil-Martínez, M.; Rico, R.; Nájera, S.; Elvira, C. (2021). Benchmark de control de la orientación de un multirrotor en una estructura de rotación con tres grados de libertad. Revista Iberoamericana de Automática e Informática industrial. 18(3):265-276. https://doi.org/10.4995/riai.2021.14356 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.14356 es_ES
dc.description.upvformatpinicio 265 es_ES
dc.description.upvformatpfin 276 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\14356 es_ES
dc.contributor.funder Gobierno de La Rioja es_ES
dc.contributor.funder Universidad de La Rioja es_ES
dc.description.references Bejarano, G., Alfaya, J., Rodriguez, D., Ortega, M., Morilla, F., 2019. Control de un sistema de refrigeración. Visitado 27.03.2021. URL: http://www.dia.uned.es/∼fmorilla/CIC2019/ es_ES
dc.description.references Bigazzi, L., Gherardini, S., Innocenti, G., Basso, M., 2021. Development of non expensive technologies for precise maneuvering of completely autonomous unmanned aerial vehicles. Sensors (Switzerland) 21 (2), 1-24. https://doi.org/10.3390/s21020391 es_ES
dc.description.references Blasco, X., García-Nieto, S., Reynoso-Meza, G., 2012. Control autónomo del seguimiento de trayectorias de un vehículo cuatrirrotor. Simulación y evaluación de propuestas. Revista Iberoamericana de Automática e Informática Industrial 9 (2), 194-199. https://doi.org/10.1016/j.riai.2012.01.001 es_ES
dc.description.references Bo, G., Xin, L., Hui, Z., Ling, W., 2016. Quadrotor helicopter attitude control using cascade PID. In: Proceedings of the 28th Chinese Control and Decision Conference, CCDC 2016. pp. 5158-5163. https://doi.org/10.1109/CCDC.2016.7531919 es_ES
dc.description.references Chen, Y., Zhang, G., Zhuang, Y., Hu, H., 2019. Autonomous flight control for multi-rotor UAVs flying at low altitude. IEEE Access 7, 42614-42625. https://doi.org/10.1109/ACCESS.2019.2908205 es_ES
dc.description.references Ebeid, E., Skriver, M., Terkildsen, K. H., Jensen, K., Schultz, U. P., 2018. A survey of open-source UAV flight controllers and flight simulators. Microprocessors and Microsystems 61, 11-20. https://doi.org/10.1016/j.micpro.2018.05.002 es_ES
dc.description.references García-Sanz, M., Elso, J., 2007. Resultados del benchmark de diseño de controladores para el cabeceo de un helicóptero. Revista Iberoamericana de Automática e Informática Industrial 4 (4), 117-120. https://doi.org/10.1016/S1697-7912(07)70251-0 es_ES
dc.description.references Gil-Martínez, M., Rico-Azagra, J., 2015. Multi-rotor robust trajectory tracking. In: 2015 23rd Mediterranean Conference on Control and Automation, MED 2015 - Conference Proceedings. pp. 865-870. https://doi.org/10.1109/MED.2015.7158854 es_ES
dc.description.references González-Vargas, A., Serna-Ramírez, J., Fory-Aguirre, C., Ojeda-Misses, A., Cardona-Ordoñez, J., Tombé-Andrade, J., Soria-López, A., 2019. A low-cost, free-software platform with hard real-time performance for control engineering education. Computer Applications in Engineering Education 27 (2), 406-418. https://doi.org/10.1002/cae.22084 es_ES
dc.description.references Hancer, M., Bitirgen, R., Bayezit, I., 2018. Designing 3-DOF hardware-inthe-loop test platform controlling multirotor vehicles. IFAC-PapersOnLine 51 (4), 119-124. https://doi.org/10.1016/j.ifacol.2018.06.058 es_ES
dc.description.references Kangunde, V., Jamisola, R.S., J., Theophilus, E., 2021. A review on drones controlled in real-time. International Journal of Dynamics and Control. es_ES
dc.description.references https://doi.org/10.1007/s40435-020-00737-5 es_ES
dc.description.references Khan, S., Jaffery, M. H., Hanif, A., Asif, M. R., 2017. Teaching tool for a control systems laboratory using a quadrotor as a plant in MATLAB. IEEE Transactions on Education 60 (4), 249-256. https://doi.org/10.1109/TE.2017.2653762 es_ES
dc.description.references Lim, H., Park, J., Lee, D., Kim, H., 2012. Build your own quadrotor: Opensource projects on unmanned aerial vehicles. IEEE Robotics and Automation Magazine 19 (3), 33-45. https://doi.org/10.1109/MRA.2012.2205629 es_ES
dc.description.references Lotufo, M., Colangelo, L., Perez-Montenegro, C., Canuto, E., Novara, C., 2019. UAV quadrotor attitude control: An ADRC-EMC combined approach. Control Engineering Practice 84, 13-22. https://doi.org/10.1016/j.conengprac.2018.11.002 es_ES
dc.description.references Madridano, A., Campos, S., Al-Kaff, A., García, F., Martín, D., Escalera, A., 2020. Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial 17 (3), 254-263. https://doi.org/10.4995/riai.2020.11806 es_ES
dc.description.references Mercader, P., Cánovas, C. D., Baños, A., 2019. Control PID multivariable de una caldera de vapor. Revista Iberoamericana de Automática e Informática Industrial 16 (1), 15-25. https://doi.org/10.4995/riai.2018.9034 es_ES
dc.description.references Morilla, F., Rodríguez, C., 2017. Control de una caldera de vapor. Visitado 27.03.2021. URL: http://www.dia.uned.es/∼fmorilla/CIC2017/ es_ES
dc.description.references Nájera, S., Rico-Azagra, J., Elvira, C., Gil-Martínez, M., 2019. Plataforma giroscópica realizada mediante impresión 3D para el control de actitud y orientación de UAVs multi-rotor. In: Actas de las XL Jornadas de Automática, Comité Español de Automática de la IFAC. pp. 317-323. https://doi.org/10.17979/spudc.9788497497169.317 es_ES
dc.description.references Nascimento, T. P., Saska, M., 2019. Position and attitude control of multi-rotor aerial vehicles: A survey. Annual Reviews in Control 48, 129-146. https://doi.org/10.1016/j.arcontrol.2019.08.004 es_ES
dc.description.references Rico, R., Maisterra, P., Gil-Martínez, M., Rico-Azagra, J., S., N., 2015. Identificación experimental de los parámetros de un cuatrirrotor. In: Actas de las XXXVI Jornadas de Automática, Comité Español de Automática de la 'IFAC. pp. 973-982. es_ES
dc.description.references Rico-Azagra, J., Gil-Martínez, M., Rico, R., Maisterra, P., 2016a. Plataforma didáctica de bajo coste para el control de actitud y orientación de UAVs multi-rotor. In: Actas de las XXXVII Jornadas de Automática, Comité Español de Automática de la IFAC. pp. 989-997. es_ES
dc.description.references Rico-Azagra, J., Gil-Martínez, M., Rico-Azagra, R., Maisterra, P., 2016b. Low-cost attitude estimation for a ground vehicle. Advances in Intelligent Systems and Computing 417, 121-132. https://doi.org/10.1007/978-3-319-27146-0 es_ES
dc.description.references Rico-Azagra, J., Rico, R., Maisterra, P., Gil-Martínez, M., 2015. Comparación de algoritmos de estimación de actitud. In: Actas de las XXXVI Jornadas de Automática, Comité Español de Automática de la IFAC. pp. 911-920. es_ES
dc.description.references Romero, J. A., Sanchis, R., 2011. Benchmark para la evaluación de algoritmos de auto-ajuste de controladores PID. Revista Iberoamericana de Automática e Informática Industrial 8 (1), 112-117. https://doi.org/10.4995/RIAI.2011.01.13 es_ES
dc.description.references Rubí, B., Perez, R., Morcego, B., 2020. A survey of path following control strategies for UAVs focused on quadrotors. Journal of Intelligent and Robotic Systems: Theory and Applications 98 (2), 241-265. https://doi.org/10.1007/s10846-019-01085-z es_ES
dc.description.references Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., Guizani, M., 2019. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 7, 48572-48634. https://doi.org/10.1109/ACCESS.2019.2909530 es_ES
dc.description.references Shraim, H., Awada, A., Youness, R., 2018. A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerospace and Electronic Systems Magazine 33 (7), 14-33. https://doi.org/10.1109/MAES.2018.160246 es_ES
dc.description.references Shuster, M. D., 1993. Survey of attitude representations. Journal of the Astronautical Sciences 41 (4), 439-517. es_ES
dc.description.references Sanchez-Fontes, E., Vilchis, J. A., Vilchis-González, A., Saldivar, B., Jacinto- 'Villegas, J., Martínez-Mendez, R., 2020. Nuevo vehículo aéreo autónomo estable por construcción: configuración y modelo dinámico. Revista Ibero-americana de Automática e Informática industrial 17 (3), 264-275. https://doi.org/10.4995/riai.2020.11603 es_ES
dc.description.references SolidWorks, 2018. Versión 2018. Dassault Systèmes S.A., Vélizy-Villacoublay, Francia. es_ES
dc.description.references Wang, P., Man, Z., Cao, Z., Zheng, J., Zhao, Y., 2016. Dynamics modelling and linear control of quadcopter. In: International Conference on Advanced Mechatronic Systems, ICAMechS. Vol. 0. pp. 498-503. https://doi.org/10.1109/ICAMechS.2016.7813499 es_ES
dc.description.references Zhang, X., Li, X., Wang, K., Lu, Y., 2014. A survey of modelling and identification of quadrotor robot. Abstract and Applied Analysis 2014, Article ID 320526, 16 pages. https://doi.org/10.1155/2014/320526 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem