Mostrar el registro sencillo del ítem
dc.contributor.author | Aguilar-López, J. M. | es_ES |
dc.contributor.author | García, R. A. | es_ES |
dc.contributor.author | Camacho, E. F. | es_ES |
dc.date.accessioned | 2021-07-07T10:33:18Z | |
dc.date.available | 2021-07-07T10:33:18Z | |
dc.date.issued | 2021-07-01 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/168917 | |
dc.description.abstract | [EN] This paper presents a bio-inspired hybrid algorithm for shape detection applicable to solar estimation in solar power plants. The objective is to locate and characterise the shape of a cloud over a solar power plant based on low level irradiance measurement with a small fleet of Unmanned Aerial Vehicles (UAVs) equipped with direct normal irradiance sensors. Toe hybrid algorithm takes inspiration and adapts ideas of the ant colony optimisation algorithm (ACO) and also uses a standard cover area algorithm, separating the field into two grids, one for each layer of the algorithm, to find the area affected by the cloud. Once the low irradiance zone is located by one of the UAVs, the others go to help it. This team delimits the cloud border using concepts of an image processing technique. Finally, the algorithm is tested by simulations. | es_ES |
dc.description.abstract | [ES] En este artículo se presenta un algoritmo híbrido bio-inspirado para la detección de formas aplicado a la estimación solar en plantas solares. Se tiene como objetivo localizar y caracterizar la forma de una nube sobre una planta solar basándose en medidas de niveles bajos de la irradiancia con una pequeña flota de vehículos aéreos no tripulados (UAVs en inglés) equipados con sensores capaces de medir la irradiancia directa normal. El algoritmo híbrido propuesto se inspira y adapta las ideas del algoritmo de optimización de colonia de hormigas (ant colony optimization, ACO) y también usa un algoritmo estándar de cobertura de área, separándose el campo de la planta solar en dos mallados, uno para cada capa del algoritmo, para encontrar el área afectada por la nube. Cuando un UAV localiza la zona de baja irradiancia, los otros van a ayudarle. Dicho equipo delimita el borde de la nube usando conceptos de técnicas de procesamiento de imágenes. Finalmente, se prueba el algoritmo propuesto mediante simulaciones. | es_ES |
dc.description.sponsorship | Este proyecto ha recibido fondos del European Research Council (ERC) en el marco del programa 'European Union's Horizon 2020 and innovation programme' (grant agreement No 789051). | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Estimation | es_ES |
dc.subject | Mobile robots | es_ES |
dc.subject | Two layers algorithm | es_ES |
dc.subject | Estimación | es_ES |
dc.subject | Robots móviles | es_ES |
dc.subject | Algoritmo de dos capas | es_ES |
dc.title | Algoritmo para la detección de formas aplicable a la estimación solar | es_ES |
dc.title.alternative | Shape detection algorithm applicable to solar estimation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2021.14765 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/789051/EU/Optimal Control of Thermal Solar Energy Systems/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Aguilar-López, JM.; García, RA.; Camacho, EF. (2021). Algoritmo para la detección de formas aplicable a la estimación solar. Revista Iberoamericana de Automática e Informática industrial. 18(3):277-287. https://doi.org/10.4995/riai.2021.14765 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2021.14765 | es_ES |
dc.description.upvformatpinicio | 277 | es_ES |
dc.description.upvformatpfin | 287 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\14765 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Aasen, H., Burkart, A., Bolten, A., Bareth, G., 2015. Generating 3d hyperspectral information with lightweight uav snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing 108, 245-259. https://doi.org/10.1016/j.isprsjprs.2015.08.002 | es_ES |
dc.description.references | Acar, E. U., Choset, H., 2000. Critica! point sensing in unknown environments. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 4. IEEE, pp. 3803-3810. | es_ES |
dc.description.references | Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P. N., Hull, D., 2002. Morse decompositions for coverage tasks. The international journal of robotics research 21 (4), 331-344. https://doi.org/10.1177/027836402320556359 | es_ES |
dc.description.references | Anderson, B. D., Pidan, B., Yu, C., Walle, D., 2008. Uav formation control: Theory and application. In: Recent advances in learning and control. Springer, pp. 15-33. https://doi.org/10.1007/978-1-84800-155-8_2 | es_ES |
dc.description.references | Ashley, T., Carrizosa, E., Fernández-Cara, E., 2017. Optimisation of aiming strategies in solar power tower plants. Energy 137, 285-291. https://doi.org/10.1016/j.energy.2017.06.163 | es_ES |
dc.description.references | Avenar, G. S., Pereira, G. A., Pimenta, L. C., Iscold, P., 2015. Multi-uav routing for area coverage and remote sensing with mínimum time. Sensors 15 (11), 27783-27803. https://doi.org/10.3390/s151127783 | es_ES |
dc.description.references | Bar-Cohen, Y., 2006. Biomimetics?using nature to inspire human innovation. Bioinspiration & biomimetics 1 (1), Pl. https://doi.org/10.1088/1748-3182/1/1/P01 | es_ES |
dc.description.references | Camacho, E. F., Gallego, A., 2013. Optimal operation in solar trough plants: A case study. Solar Energy 95, 106-117. https://doi.org/10.1016/j.solener.2013.05.029 | es_ES |
dc.description.references | Camacho, E. F., Soria, M. B., Rubio, F. R., Martínez, D., 2012. Control of Solar Energy Systems. Springer Science & Business Media. https://doi.org/10.1007/978-0-85729-916-1 | es_ES |
dc.description.references | Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S., 2010. A visionbased guidance system for uav navigation and safe landing using natural landmarks. Joumal of intelligent and robotic systems 57 (1-4), 233. https://doi.org/10.1007/s10846-009-9373-3 | es_ES |
dc.description.references | Choi, Y., Choi, Y., Briceno, S., Mavris, D. N., 2020. Energy-constrained multiuav coverage path planning for an aerial imagery mission using column generation. Journal oflntelligent & Robotic Systems 97 (1), 125-139. https://doi.org/10.1007/s10846-019-01010-4 | es_ES |
dc.description.references | Choset, H., Pignon, P., 1998. Coverage path planning: Toe boustrophedon cellular decomposition. In: Field and service robo tics. Springer, pp. 203-209. https://doi.org/10.1007/978-1-4471-1273-0_32 | es_ES |
dc.description.references | Coombes, M., Chen, W.-H., Liu, C., 2017. Boustrophedon coverage path planning for uav aerial surveys in wind. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 1563-1571. https://doi.org/10.1109/ICUAS.2017.7991469 | es_ES |
dc.description.references | Current, J. R., Schilling, D. A., 1989. Toe covering salesman problem. Transportation science 23 (3), 208-213. https://doi.org/10.1287/trsc.23.3.208 | es_ES |
dc.description.references | Daus, P. H., 1932. Toe march meeting of the southem california section. The American Mathematical Monthly 39 (7), 373-374. https://doi.org/10.1080/00029890.1932.11987331 | es_ES |
dc.description.references | Dil Technology lnc., 2015. Phantom 3 pro user manual. https: //dl.djicdn.com/downloads/phantom_3/en/Phantom_3_Professional_User_Manual __ V1. 6 .pdf, accessed: 2021-01-18. | es_ES |
dc.description.references | Dorigo, M., 1991. Ant colony optimization?new optimization techniques in engineering. by Onwubolu, GC, and BV Babu, Springer-Verlag Berlín Heidelberg, 101-117. | es_ES |
dc.description.references | Galceran, E., Carreras, M., 2013. A survey on coverage path planning for robotics. Robotics and Autonomous systems 61 (12), 1258-1276. https://doi.org/10.1016/j.robot.2013.09.004 | es_ES |
dc.description.references | García, R., Orihuela, L., Millán, P., Rubio, F., Ortega, M., 2020. Guaranteed estimation and distributed control of vehicle formations. International Joumal of Control, 1-24. https://doi.org/10.1080/00207179.2020.1714074 | es_ES |
dc.description.references | Jin, J., Tang, L., 2010. Optima! coverage path planning for arable farming on 2d surfaces. Transactions of the ASABE 53 (1), 283-295. https://doi.org/10.13031/2013.29488 | es_ES |
dc.description.references | Johnson, D. S., McGeoch, L. A., 1997. The traveling salesman problem: A case study in local optimization. Local search in combinatoria! optimization 1 (1), 215-310. https://doi.org/10.2307/j.ctv346t9c.13 | es_ES |
dc.description.references | Kuhn, P., Wilbert, S., Prahl, C., Schüler, D., Haase, T., Hirsch, T., Wittmann, M., Ramirez, L., Zarzalejo, L., Meyer, A., et al., 2017. Shadow camera system for the generation of solar irradiance maps. Solar Energy 157, 157-170. https://doi.org/10.1016/j.solener.2017.05.074 | es_ES |
dc.description.references | Law, E. W., Prasad, A. A., Kay, M., Taylor, R. A., 2014. Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting-a review. Solar Energy 108, 287-307. https://doi.org/10.1016/j.solener.2014.07.008 | es_ES |
dc.description.references | Nouri, B., Kuhn, P., Wilbert, S., Prahl, C., Pitz-Paal, R., Blanc, P., Schmidt, T., Yasser, Z., Santigosa, L. R., Heineman, D., 2018. Nowcasting of dni maps for the solar field based on voxel carving and individual 3d cloud objects from ali sky images. In: AIP Conference Proceedings. Vol. 2033. AIP Publishing LLC, p. 190011. | es_ES |
dc.description.references | https://doi.org/10.1063/1.5067196 | es_ES |
dc.description.references | Ntawumenyikizaba, A., Viet, H. H., Chung, T., 2012. An online complete coverage algorithm for cleaning robots based on boustrophedon motions and a* search. In: 2012 8th Intemational Conference on Information Science and Digital Content Technology (ICIDT2012). Vol. 2. IEEE, pp. 401-405. | es_ES |
dc.description.references | Oksanen, T., Visala, A., 2009. Coverage path planning algorithms for agricultural field machines. Journal offield robotics 26 (8), 651-668. https://doi.org/10.1002/rob.20300 | es_ES |
dc.description.references | Rokhmana, C. A., 2015. The potential of uav-based remate sensing for supporting precision agriculture in indonesia. Procedía Environmental Sciences 24 (2015), 245-253. https://doi.org/10.1016/j.proenv.2015.03.032 | es_ES |
dc.description.references | Sánchez, A., Gallego, A., Escaño, J., Camacho, E., 2018. Temperature homogenization of a solar trough field for performance improvement. Solar Energy 165, 1-9. https://doi.org/10.1016/j.solener.2018.03.001 | es_ES |
dc.description.references | Sánchez, A., Gallego, A., Escaño, J., Camacho, E. F., 2019. Thermal balance of large scale parabolic trough plants: A case study. Solar Energy 190, 69-81. https://doi.org/10.1016/j.solener.2019.08.001 | es_ES |
dc.description.references | Savant, S., 2014. A review on edge detection techniques for image segmentation. Intemational Joumal of Computer Science and Information Technologies 5 (4), 5898-5900. | es_ES |
dc.description.references | Sheng, H., Chao, H., Coopmans, C., Han, J., McKee, M., Chen, Y., 2010. Lowcost uav-based thermal infrared remote sensing: Platform, calibration and applications. In: Proceedings of2010 IEEE/ASME Intemational Conference on Mechatronic and Embedded Systems and Applications. IEEE, pp. 38-43. https://doi.org/10.1109/MESA.2010.5552031 | es_ES |
dc.description.references | Silvagni, M., Tonoli, A., Zenerino, E., Chiaberge, M., 2017. Multipurpose uav for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk 8 (1), 18-33. https://doi.org/10.1080/19475705.2016.1238852 | es_ES |
dc.description.references | Sobel, l., Feldman, G., 1968. A 3x3 isotropic gradient operator for irnage processing. a talk at the Stanford Artificial Project in, 271-272. Technologies, S. M., 2019. Sun Sensor NANO-ISSX/c technical specifications. http://www. solar-mems. com/ smt_pdf /NANO_ Technical_Specif ications. pdf, accessed: 2020-08-18. | es_ES |
dc.description.references | Xiong, C., Chen, D., Lu, D., Zeng, Z., Lian, L., 2019. Path planning ofmultiple autonomous marine vehicles for adaptive sampling using voronoi-based ant colony optimization. Robotics and Autonomous Systems 115, 90-103. https://doi.org/10.1016/j.robot.2019.02.002 | es_ES |
dc.description.references | Xu, L., Wang, Z., Yuan, G., Sun, F., Zhang, X., 2015. Thermal performance of parabolic trough solar collectors under the condition of dramatically varying dni. Energy Procedía 69, 218-225. https://doi.org/10.1016/j.egypro.2015.03.025 | es_ES |
dc.description.references | Yfantis, E., 2019. A uav with autonomy, pattem recognition for forest fire prevention, and ai for providing advice to firefighters fighting forest fires. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, pp. 0409--0413. https://doi.org/10.1109/CCWC.2019.8666471 | es_ES |
dc.description.references | Zhang, Z., Schwartz, S., Wagner, L., Miller, W., 2000. A greedy algorithm for aligning dna sequences. Joumal ofComputational biology 7 (1-2), 203-214. https://doi.org/10.1089/10665270050081478 | es_ES |