- -

Algoritmo para la detección de formas aplicable a la estimación solar

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Algoritmo para la detección de formas aplicable a la estimación solar

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aguilar-López, J. M. es_ES
dc.contributor.author García, R. A. es_ES
dc.contributor.author Camacho, E. F. es_ES
dc.date.accessioned 2021-07-07T10:33:18Z
dc.date.available 2021-07-07T10:33:18Z
dc.date.issued 2021-07-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/168917
dc.description.abstract [EN] This paper presents a bio-inspired hybrid algorithm for shape detection applicable to solar estimation in solar power plants. The objective is to locate and characterise the shape of a cloud over a solar power plant based on low level irradiance measurement with a small fleet of Unmanned Aerial Vehicles (UAVs) equipped with direct normal irradiance sensors. Toe hybrid algorithm takes inspiration and adapts ideas of the ant colony optimisation algorithm (ACO) and also uses a standard cover area algorithm, separating the field into two grids, one for each layer of the algorithm, to find the area affected by the cloud. Once the low irradiance zone is located by one of the UAVs, the others go to help it. This team delimits the cloud border using concepts of an image processing technique. Finally, the algorithm is tested by simulations. es_ES
dc.description.abstract [ES] En este artículo se presenta un algoritmo híbrido bio-inspirado para la detección de formas aplicado a la estimación solar en plantas solares. Se tiene como objetivo localizar y caracterizar la forma de una nube sobre una planta solar basándose en medidas de niveles bajos de la irradiancia con una pequeña flota de vehículos aéreos no tripulados (UAVs en inglés) equipados con sensores capaces de medir la irradiancia directa normal. El algoritmo híbrido propuesto se inspira y adapta las ideas del algoritmo de optimización de colonia de hormigas (ant colony optimization, ACO) y también usa un algoritmo estándar de cobertura de área, separándose el campo de la planta solar en dos mallados, uno para cada capa del algoritmo, para encontrar el área afectada por la nube. Cuando un UAV localiza la zona de baja irradiancia, los otros van a ayudarle. Dicho equipo delimita el borde de la nube usando conceptos de técnicas de procesamiento de imágenes. Finalmente, se prueba el algoritmo propuesto mediante simulaciones. es_ES
dc.description.sponsorship Este proyecto ha recibido fondos del European Research Council (ERC) en el marco del programa 'European Union's Horizon 2020 and innovation programme' (grant agreement No 789051). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Estimation es_ES
dc.subject Mobile robots es_ES
dc.subject Two layers algorithm es_ES
dc.subject Estimación es_ES
dc.subject Robots móviles es_ES
dc.subject Algoritmo de dos capas es_ES
dc.title Algoritmo para la detección de formas aplicable a la estimación solar es_ES
dc.title.alternative Shape detection algorithm applicable to solar estimation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.14765
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/789051/EU/Optimal Control of Thermal Solar Energy Systems/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Aguilar-López, JM.; García, RA.; Camacho, EF. (2021). Algoritmo para la detección de formas aplicable a la estimación solar. Revista Iberoamericana de Automática e Informática industrial. 18(3):277-287. https://doi.org/10.4995/riai.2021.14765 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.14765 es_ES
dc.description.upvformatpinicio 277 es_ES
dc.description.upvformatpfin 287 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\14765 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Aasen, H., Burkart, A., Bolten, A., Bareth, G., 2015. Generating 3d hyperspectral information with lightweight uav snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing 108, 245-259. https://doi.org/10.1016/j.isprsjprs.2015.08.002 es_ES
dc.description.references Acar, E. U., Choset, H., 2000. Critica! point sensing in unknown environments. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 4. IEEE, pp. 3803-3810. es_ES
dc.description.references Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P. N., Hull, D., 2002. Morse decompositions for coverage tasks. The international journal of robotics research 21 (4), 331-344. https://doi.org/10.1177/027836402320556359 es_ES
dc.description.references Anderson, B. D., Pidan, B., Yu, C., Walle, D., 2008. Uav formation control: Theory and application. In: Recent advances in learning and control. Springer, pp. 15-33. https://doi.org/10.1007/978-1-84800-155-8_2 es_ES
dc.description.references Ashley, T., Carrizosa, E., Fernández-Cara, E., 2017. Optimisation of aiming strategies in solar power tower plants. Energy 137, 285-291. https://doi.org/10.1016/j.energy.2017.06.163 es_ES
dc.description.references Avenar, G. S., Pereira, G. A., Pimenta, L. C., Iscold, P., 2015. Multi-uav routing for area coverage and remote sensing with mínimum time. Sensors 15 (11), 27783-27803. https://doi.org/10.3390/s151127783 es_ES
dc.description.references Bar-Cohen, Y., 2006. Biomimetics?using nature to inspire human innovation. Bioinspiration & biomimetics 1 (1), Pl. https://doi.org/10.1088/1748-3182/1/1/P01 es_ES
dc.description.references Camacho, E. F., Gallego, A., 2013. Optimal operation in solar trough plants: A case study. Solar Energy 95, 106-117. https://doi.org/10.1016/j.solener.2013.05.029 es_ES
dc.description.references Camacho, E. F., Soria, M. B., Rubio, F. R., Martínez, D., 2012. Control of Solar Energy Systems. Springer Science & Business Media. https://doi.org/10.1007/978-0-85729-916-1 es_ES
dc.description.references Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S., 2010. A visionbased guidance system for uav navigation and safe landing using natural landmarks. Joumal of intelligent and robotic systems 57 (1-4), 233. https://doi.org/10.1007/s10846-009-9373-3 es_ES
dc.description.references Choi, Y., Choi, Y., Briceno, S., Mavris, D. N., 2020. Energy-constrained multiuav coverage path planning for an aerial imagery mission using column generation. Journal oflntelligent & Robotic Systems 97 (1), 125-139. https://doi.org/10.1007/s10846-019-01010-4 es_ES
dc.description.references Choset, H., Pignon, P., 1998. Coverage path planning: Toe boustrophedon cellular decomposition. In: Field and service robo tics. Springer, pp. 203-209. https://doi.org/10.1007/978-1-4471-1273-0_32 es_ES
dc.description.references Coombes, M., Chen, W.-H., Liu, C., 2017. Boustrophedon coverage path planning for uav aerial surveys in wind. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 1563-1571. https://doi.org/10.1109/ICUAS.2017.7991469 es_ES
dc.description.references Current, J. R., Schilling, D. A., 1989. Toe covering salesman problem. Transportation science 23 (3), 208-213. https://doi.org/10.1287/trsc.23.3.208 es_ES
dc.description.references Daus, P. H., 1932. Toe march meeting of the southem california section. The American Mathematical Monthly 39 (7), 373-374. https://doi.org/10.1080/00029890.1932.11987331 es_ES
dc.description.references Dil Technology lnc., 2015. Phantom 3 pro user manual. https: //dl.djicdn.com/downloads/phantom_3/en/Phantom_3_Professional_User_Manual __ V1. 6 .pdf, accessed: 2021-01-18. es_ES
dc.description.references Dorigo, M., 1991. Ant colony optimization?new optimization techniques in engineering. by Onwubolu, GC, and BV Babu, Springer-Verlag Berlín Heidelberg, 101-117. es_ES
dc.description.references Galceran, E., Carreras, M., 2013. A survey on coverage path planning for robotics. Robotics and Autonomous systems 61 (12), 1258-1276. https://doi.org/10.1016/j.robot.2013.09.004 es_ES
dc.description.references García, R., Orihuela, L., Millán, P., Rubio, F., Ortega, M., 2020. Guaranteed estimation and distributed control of vehicle formations. International Joumal of Control, 1-24. https://doi.org/10.1080/00207179.2020.1714074 es_ES
dc.description.references Jin, J., Tang, L., 2010. Optima! coverage path planning for arable farming on 2d surfaces. Transactions of the ASABE 53 (1), 283-295. https://doi.org/10.13031/2013.29488 es_ES
dc.description.references Johnson, D. S., McGeoch, L. A., 1997. The traveling salesman problem: A case study in local optimization. Local search in combinatoria! optimization 1 (1), 215-310. https://doi.org/10.2307/j.ctv346t9c.13 es_ES
dc.description.references Kuhn, P., Wilbert, S., Prahl, C., Schüler, D., Haase, T., Hirsch, T., Wittmann, M., Ramirez, L., Zarzalejo, L., Meyer, A., et al., 2017. Shadow camera system for the generation of solar irradiance maps. Solar Energy 157, 157-170. https://doi.org/10.1016/j.solener.2017.05.074 es_ES
dc.description.references Law, E. W., Prasad, A. A., Kay, M., Taylor, R. A., 2014. Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting-a review. Solar Energy 108, 287-307. https://doi.org/10.1016/j.solener.2014.07.008 es_ES
dc.description.references Nouri, B., Kuhn, P., Wilbert, S., Prahl, C., Pitz-Paal, R., Blanc, P., Schmidt, T., Yasser, Z., Santigosa, L. R., Heineman, D., 2018. Nowcasting of dni maps for the solar field based on voxel carving and individual 3d cloud objects from ali sky images. In: AIP Conference Proceedings. Vol. 2033. AIP Publishing LLC, p. 190011. es_ES
dc.description.references https://doi.org/10.1063/1.5067196 es_ES
dc.description.references Ntawumenyikizaba, A., Viet, H. H., Chung, T., 2012. An online complete coverage algorithm for cleaning robots based on boustrophedon motions and a* search. In: 2012 8th Intemational Conference on Information Science and Digital Content Technology (ICIDT2012). Vol. 2. IEEE, pp. 401-405. es_ES
dc.description.references Oksanen, T., Visala, A., 2009. Coverage path planning algorithms for agricultural field machines. Journal offield robotics 26 (8), 651-668. https://doi.org/10.1002/rob.20300 es_ES
dc.description.references Rokhmana, C. A., 2015. The potential of uav-based remate sensing for supporting precision agriculture in indonesia. Procedía Environmental Sciences 24 (2015), 245-253. https://doi.org/10.1016/j.proenv.2015.03.032 es_ES
dc.description.references Sánchez, A., Gallego, A., Escaño, J., Camacho, E., 2018. Temperature homogenization of a solar trough field for performance improvement. Solar Energy 165, 1-9. https://doi.org/10.1016/j.solener.2018.03.001 es_ES
dc.description.references Sánchez, A., Gallego, A., Escaño, J., Camacho, E. F., 2019. Thermal balance of large scale parabolic trough plants: A case study. Solar Energy 190, 69-81. https://doi.org/10.1016/j.solener.2019.08.001 es_ES
dc.description.references Savant, S., 2014. A review on edge detection techniques for image segmentation. Intemational Joumal of Computer Science and Information Technologies 5 (4), 5898-5900. es_ES
dc.description.references Sheng, H., Chao, H., Coopmans, C., Han, J., McKee, M., Chen, Y., 2010. Lowcost uav-based thermal infrared remote sensing: Platform, calibration and applications. In: Proceedings of2010 IEEE/ASME Intemational Conference on Mechatronic and Embedded Systems and Applications. IEEE, pp. 38-43. https://doi.org/10.1109/MESA.2010.5552031 es_ES
dc.description.references Silvagni, M., Tonoli, A., Zenerino, E., Chiaberge, M., 2017. Multipurpose uav for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk 8 (1), 18-33. https://doi.org/10.1080/19475705.2016.1238852 es_ES
dc.description.references Sobel, l., Feldman, G., 1968. A 3x3 isotropic gradient operator for irnage processing. a talk at the Stanford Artificial Project in, 271-272. Technologies, S. M., 2019. Sun Sensor NANO-ISSX/c technical specifications. http://www. solar-mems. com/ smt_pdf /NANO_ Technical_Specif ications. pdf, accessed: 2020-08-18. es_ES
dc.description.references Xiong, C., Chen, D., Lu, D., Zeng, Z., Lian, L., 2019. Path planning ofmultiple autonomous marine vehicles for adaptive sampling using voronoi-based ant colony optimization. Robotics and Autonomous Systems 115, 90-103. https://doi.org/10.1016/j.robot.2019.02.002 es_ES
dc.description.references Xu, L., Wang, Z., Yuan, G., Sun, F., Zhang, X., 2015. Thermal performance of parabolic trough solar collectors under the condition of dramatically varying dni. Energy Procedía 69, 218-225. https://doi.org/10.1016/j.egypro.2015.03.025 es_ES
dc.description.references Yfantis, E., 2019. A uav with autonomy, pattem recognition for forest fire prevention, and ai for providing advice to firefighters fighting forest fires. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, pp. 0409--0413. https://doi.org/10.1109/CCWC.2019.8666471 es_ES
dc.description.references Zhang, Z., Schwartz, S., Wagner, L., Miller, W., 2000. A greedy algorithm for aligning dna sequences. Joumal ofComputational biology 7 (1-2), 203-214. https://doi.org/10.1089/10665270050081478 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem