- -

Algoritmo para la detección de formas aplicable a la estimación solar

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Algoritmo para la detección de formas aplicable a la estimación solar

Mostrar el registro completo del ítem

Aguilar-López, JM.; García, RA.; Camacho, EF. (2021). Algoritmo para la detección de formas aplicable a la estimación solar. Revista Iberoamericana de Automática e Informática industrial. 18(3):277-287. https://doi.org/10.4995/riai.2021.14765

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168917

Ficheros en el ítem

Metadatos del ítem

Título: Algoritmo para la detección de formas aplicable a la estimación solar
Otro titulo: Shape detection algorithm applicable to solar estimation
Autor: Aguilar-López, J. M. García, R. A. Camacho, E. F.
Fecha difusión:
Resumen:
[EN] This paper presents a bio-inspired hybrid algorithm for shape detection applicable to solar estimation in solar power plants. The objective is to locate and characterise the shape of a cloud over a solar power plant ...[+]


[ES] En este artículo se presenta un algoritmo híbrido bio-inspirado para la detección de formas aplicado a la estimación solar en plantas solares. Se tiene como objetivo localizar y caracterizar la forma de una nube sobre ...[+]
Palabras clave: Estimation , Mobile robots , Two layers algorithm , Estimación , Robots móviles , Algoritmo de dos capas
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2021.14765
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2021.14765
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/789051/EU/Optimal Control of Thermal Solar Energy Systems/
Agradecimientos:
Este proyecto ha recibido fondos del European Research Council (ERC) en el marco del programa 'European Union's Horizon 2020 and innovation programme' (grant agreement No 789051).
Tipo: Artículo

References

Aasen, H., Burkart, A., Bolten, A., Bareth, G., 2015. Generating 3d hyperspectral information with lightweight uav snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing 108, 245-259. https://doi.org/10.1016/j.isprsjprs.2015.08.002

Acar, E. U., Choset, H., 2000. Critica! point sensing in unknown environments. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 4. IEEE, pp. 3803-3810.

Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P. N., Hull, D., 2002. Morse decompositions for coverage tasks. The international journal of robotics research 21 (4), 331-344. https://doi.org/10.1177/027836402320556359 [+]
Aasen, H., Burkart, A., Bolten, A., Bareth, G., 2015. Generating 3d hyperspectral information with lightweight uav snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing 108, 245-259. https://doi.org/10.1016/j.isprsjprs.2015.08.002

Acar, E. U., Choset, H., 2000. Critica! point sensing in unknown environments. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 4. IEEE, pp. 3803-3810.

Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P. N., Hull, D., 2002. Morse decompositions for coverage tasks. The international journal of robotics research 21 (4), 331-344. https://doi.org/10.1177/027836402320556359

Anderson, B. D., Pidan, B., Yu, C., Walle, D., 2008. Uav formation control: Theory and application. In: Recent advances in learning and control. Springer, pp. 15-33. https://doi.org/10.1007/978-1-84800-155-8_2

Ashley, T., Carrizosa, E., Fernández-Cara, E., 2017. Optimisation of aiming strategies in solar power tower plants. Energy 137, 285-291. https://doi.org/10.1016/j.energy.2017.06.163

Avenar, G. S., Pereira, G. A., Pimenta, L. C., Iscold, P., 2015. Multi-uav routing for area coverage and remote sensing with mínimum time. Sensors 15 (11), 27783-27803. https://doi.org/10.3390/s151127783

Bar-Cohen, Y., 2006. Biomimetics?using nature to inspire human innovation. Bioinspiration & biomimetics 1 (1), Pl. https://doi.org/10.1088/1748-3182/1/1/P01

Camacho, E. F., Gallego, A., 2013. Optimal operation in solar trough plants: A case study. Solar Energy 95, 106-117. https://doi.org/10.1016/j.solener.2013.05.029

Camacho, E. F., Soria, M. B., Rubio, F. R., Martínez, D., 2012. Control of Solar Energy Systems. Springer Science & Business Media. https://doi.org/10.1007/978-0-85729-916-1

Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S., 2010. A visionbased guidance system for uav navigation and safe landing using natural landmarks. Joumal of intelligent and robotic systems 57 (1-4), 233. https://doi.org/10.1007/s10846-009-9373-3

Choi, Y., Choi, Y., Briceno, S., Mavris, D. N., 2020. Energy-constrained multiuav coverage path planning for an aerial imagery mission using column generation. Journal oflntelligent & Robotic Systems 97 (1), 125-139. https://doi.org/10.1007/s10846-019-01010-4

Choset, H., Pignon, P., 1998. Coverage path planning: Toe boustrophedon cellular decomposition. In: Field and service robo tics. Springer, pp. 203-209. https://doi.org/10.1007/978-1-4471-1273-0_32

Coombes, M., Chen, W.-H., Liu, C., 2017. Boustrophedon coverage path planning for uav aerial surveys in wind. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 1563-1571. https://doi.org/10.1109/ICUAS.2017.7991469

Current, J. R., Schilling, D. A., 1989. Toe covering salesman problem. Transportation science 23 (3), 208-213. https://doi.org/10.1287/trsc.23.3.208

Daus, P. H., 1932. Toe march meeting of the southem california section. The American Mathematical Monthly 39 (7), 373-374. https://doi.org/10.1080/00029890.1932.11987331

Dil Technology lnc., 2015. Phantom 3 pro user manual. https: //dl.djicdn.com/downloads/phantom_3/en/Phantom_3_Professional_User_Manual __ V1. 6 .pdf, accessed: 2021-01-18.

Dorigo, M., 1991. Ant colony optimization?new optimization techniques in engineering. by Onwubolu, GC, and BV Babu, Springer-Verlag Berlín Heidelberg, 101-117.

Galceran, E., Carreras, M., 2013. A survey on coverage path planning for robotics. Robotics and Autonomous systems 61 (12), 1258-1276. https://doi.org/10.1016/j.robot.2013.09.004

García, R., Orihuela, L., Millán, P., Rubio, F., Ortega, M., 2020. Guaranteed estimation and distributed control of vehicle formations. International Joumal of Control, 1-24. https://doi.org/10.1080/00207179.2020.1714074

Jin, J., Tang, L., 2010. Optima! coverage path planning for arable farming on 2d surfaces. Transactions of the ASABE 53 (1), 283-295. https://doi.org/10.13031/2013.29488

Johnson, D. S., McGeoch, L. A., 1997. The traveling salesman problem: A case study in local optimization. Local search in combinatoria! optimization 1 (1), 215-310. https://doi.org/10.2307/j.ctv346t9c.13

Kuhn, P., Wilbert, S., Prahl, C., Schüler, D., Haase, T., Hirsch, T., Wittmann, M., Ramirez, L., Zarzalejo, L., Meyer, A., et al., 2017. Shadow camera system for the generation of solar irradiance maps. Solar Energy 157, 157-170. https://doi.org/10.1016/j.solener.2017.05.074

Law, E. W., Prasad, A. A., Kay, M., Taylor, R. A., 2014. Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting-a review. Solar Energy 108, 287-307. https://doi.org/10.1016/j.solener.2014.07.008

Nouri, B., Kuhn, P., Wilbert, S., Prahl, C., Pitz-Paal, R., Blanc, P., Schmidt, T., Yasser, Z., Santigosa, L. R., Heineman, D., 2018. Nowcasting of dni maps for the solar field based on voxel carving and individual 3d cloud objects from ali sky images. In: AIP Conference Proceedings. Vol. 2033. AIP Publishing LLC, p. 190011.

https://doi.org/10.1063/1.5067196

Ntawumenyikizaba, A., Viet, H. H., Chung, T., 2012. An online complete coverage algorithm for cleaning robots based on boustrophedon motions and a* search. In: 2012 8th Intemational Conference on Information Science and Digital Content Technology (ICIDT2012). Vol. 2. IEEE, pp. 401-405.

Oksanen, T., Visala, A., 2009. Coverage path planning algorithms for agricultural field machines. Journal offield robotics 26 (8), 651-668. https://doi.org/10.1002/rob.20300

Rokhmana, C. A., 2015. The potential of uav-based remate sensing for supporting precision agriculture in indonesia. Procedía Environmental Sciences 24 (2015), 245-253. https://doi.org/10.1016/j.proenv.2015.03.032

Sánchez, A., Gallego, A., Escaño, J., Camacho, E., 2018. Temperature homogenization of a solar trough field for performance improvement. Solar Energy 165, 1-9. https://doi.org/10.1016/j.solener.2018.03.001

Sánchez, A., Gallego, A., Escaño, J., Camacho, E. F., 2019. Thermal balance of large scale parabolic trough plants: A case study. Solar Energy 190, 69-81. https://doi.org/10.1016/j.solener.2019.08.001

Savant, S., 2014. A review on edge detection techniques for image segmentation. Intemational Joumal of Computer Science and Information Technologies 5 (4), 5898-5900.

Sheng, H., Chao, H., Coopmans, C., Han, J., McKee, M., Chen, Y., 2010. Lowcost uav-based thermal infrared remote sensing: Platform, calibration and applications. In: Proceedings of2010 IEEE/ASME Intemational Conference on Mechatronic and Embedded Systems and Applications. IEEE, pp. 38-43. https://doi.org/10.1109/MESA.2010.5552031

Silvagni, M., Tonoli, A., Zenerino, E., Chiaberge, M., 2017. Multipurpose uav for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk 8 (1), 18-33. https://doi.org/10.1080/19475705.2016.1238852

Sobel, l., Feldman, G., 1968. A 3x3 isotropic gradient operator for irnage processing. a talk at the Stanford Artificial Project in, 271-272. Technologies, S. M., 2019. Sun Sensor NANO-ISSX/c technical specifications. http://www. solar-mems. com/ smt_pdf /NANO_ Technical_Specif ications. pdf, accessed: 2020-08-18.

Xiong, C., Chen, D., Lu, D., Zeng, Z., Lian, L., 2019. Path planning ofmultiple autonomous marine vehicles for adaptive sampling using voronoi-based ant colony optimization. Robotics and Autonomous Systems 115, 90-103. https://doi.org/10.1016/j.robot.2019.02.002

Xu, L., Wang, Z., Yuan, G., Sun, F., Zhang, X., 2015. Thermal performance of parabolic trough solar collectors under the condition of dramatically varying dni. Energy Procedía 69, 218-225. https://doi.org/10.1016/j.egypro.2015.03.025

Yfantis, E., 2019. A uav with autonomy, pattem recognition for forest fire prevention, and ai for providing advice to firefighters fighting forest fires. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, pp. 0409--0413. https://doi.org/10.1109/CCWC.2019.8666471

Zhang, Z., Schwartz, S., Wagner, L., Miller, W., 2000. A greedy algorithm for aligning dna sequences. Joumal ofComputational biology 7 (1-2), 203-214. https://doi.org/10.1089/10665270050081478

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem