- -

Aplicaciones practicas de los sistemas multi-UAV y enjambres aéreos

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Aplicaciones practicas de los sistemas multi-UAV y enjambres aéreos

Show simple item record

Files in this item

dc.contributor.author García-Aunon, P. es_ES
dc.contributor.author Roldán, J.J. es_ES
dc.contributor.author De León, J. es_ES
dc.contributor.author Del Cerro, J. es_ES
dc.contributor.author Barrientos, A. es_ES
dc.date.accessioned 2021-07-07T10:41:11Z
dc.date.available 2021-07-07T10:41:11Z
dc.date.issued 2021-07-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/168919
dc.description.abstract [EN] Nowadays, there are a large number of unmanned aircraft on the market that can be commanded with high-level orders to perform complex tasks almost automatically, such as mapping crop fields. We can ask ourselves if it would be possible to coordinate a group of these robots to perform those same tasks more quickly, flexibly and robustly. In this work, we summarize the tasks that have been studied to be solved with systems composed by groups of unmanned aircraft and the algorithms used, as well as the methods and strategies on which they are based. Although the future of these systems is promising, there are certain legislative and technical obstacles that stop their implementation in a generalized way. es_ES
dc.description.abstract [ES] A día de hoy, existen en el mercado una gran cantidad de aeronaves sin piloto que pueden ser comandadas con ordenes de alto nivel para realizar tareas complejas de forma casi automatica, como por ejemplo el mapeo de explotaciones agrícolas. De forma natural, nos podemos preguntar si sería posible coordinar a un grupo de estos robots para realizar esas mismas tareas de forma más rápida, flexible y robusta. En este trabajo se repasan las tareas que se han planteado resolver con sistemas compuestos por grupos de aeronaves no tripuladas y los algoritmos empleados, así como los metodos y estrategias en los que están basados. Aunque el futuro de estos sistemas es prometedor, existen ciertos obstaculos legislativos y técnicos que frenan su implantación de forma generalizada. es_ES
dc.description.sponsorship Las investigaciones que han dado como resultado este trabajo han sido financiadas por RoboCity2030-DIH-CM, 426 Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, financiadas por los Programas de Actividades I+D en la Comunidad Madrid, y por el proyecto TASAR (Team of Advanced Search And Rescue Robots), PID2019-105808RB-I00, financiado por el Ministerio de Ciencia e Innovacion (Gobierno de España). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Multi-UAV es_ES
dc.subject Aerial swarms es_ES
dc.subject Tasks es_ES
dc.subject Deployment es_ES
dc.subject Coverage es_ES
dc.subject Search and rescue es_ES
dc.subject Surveillance es_ES
dc.subject Monitoring es_ES
dc.subject Transport es_ES
dc.subject Enjambres aéreos es_ES
dc.subject Tareas es_ES
dc.subject Despliegue es_ES
dc.subject Cobertura es_ES
dc.subject Búsqueda y rescate es_ES
dc.subject Vigilancia es_ES
dc.subject Monitorización es_ES
dc.subject Transporte es_ES
dc.title Aplicaciones practicas de los sistemas multi-UAV y enjambres aéreos es_ES
dc.title.alternative Practical applications using multi-UAV systems and aerial robotic swarms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.13560
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105808RB-I00/ES/EQUIPO DE ROBOTS PARA MISIONES PARA BUSQUEDA Y RESCATE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4331/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation García-Aunon, P.; Roldán, J.; De León, J.; Del Cerro, J.; Barrientos, A. (2021). Aplicaciones practicas de los sistemas multi-UAV y enjambres aéreos. Revista Iberoamericana de Automática e Informática industrial. 18(3):230-241. https://doi.org/10.4995/riai.2020.13560 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.13560 es_ES
dc.description.upvformatpinicio 230 es_ES
dc.description.upvformatpfin 241 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\13560 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Acevedo, J. J., Arrue, B. C., Maza, I., Ollero, A., 2013. Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. Journal of Intelligent & Robotic Systems 70 (1-4), 329-345. https://doi.org/10.1007/s10846-012-9716-3 es_ES
dc.description.references Albani, D., IJsselmuiden, J., Haken, R., Trianni, V., 2017. Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, pp. 1-6. https://doi.org/10.1109/AVSS.2017.8078478 es_ES
dc.description.references Alvear, O., Zema, N. R., Natalizio, E., Calafate, C. T., 2017. Using uav-based systems to monitor air pollution in areas with poor accessibility. Journal of Advanced Transportation 2017. https://doi.org/10.1155/2017/8204353 es_ES
dc.description.references Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., Willmann, J. S., Gramazio, F., Kohler, M., D'Andrea, R., 2014. The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems Magazine 34 (4), 46-64. https://doi.org/10.1109/MCS.2014.2320359 es_ES
dc.description.references Barrientos, A., Colorado, J., Cerro, J. d., Martinez, A., Rossi, C., Sanz, D., Valente, J., 2011. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics 28 (5), 667-689. https://doi.org/10.1002/rob.20403 es_ES
dc.description.references Beck, Z., Teacy, W. L., Rogers, A., Jennings, N. R., 2018. Collaborative online planning for automated victim search in disaster response. Robotics and Autonomous Systems 100, 251-266. https://doi.org/10.1016/j.robot.2017.09.014 es_ES
dc.description.references Bennet, D. J., MacInnes, C., Suzuki, M., Uchiyama, K., 2011. Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles. Journal of guidance, control, and dynamics 34 (6), 1899-1908. https://doi.org/10.2514/1.53931 es_ES
dc.description.references Bernard, M., Kondak, K., Maza, I., Ollero, A., 2011. Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics 28 (6), 914-931. https://doi.org/10.1002/rob.20401 es_ES
dc.description.references Carrasco, Á. M., Novoa, S. C., Al-Kaff, A., Fernández, F. G., Gómez, D. M., de la Escalera Hueso, A., 2020. Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial. es_ES
dc.description.references Chen, S., Li, C., Zhuo, S., 2017. A distributed coverage algorithm for multiuav with average voronoi partition. In: 2017 17th International Conference on Control, Automation and Systems (ICCAS). IEEE, pp. 1083-1086. https://doi.org/10.23919/ICCAS.2017.8204377 es_ES
dc.description.references Cieslewski, T., Choudhary, S., Scaramuzza, D., 2018. Data-efficient decentralized visual slam. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 2466-2473. https://doi.org/10.1109/ICRA.2018.8461155 es_ES
dc.description.references Cimino, M. G., Lazzeri, A., Vaglini, G., 2015. Combining stigmergic and flocking behaviors to coordinate swarms of drones performing target search. In: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, pp. 1-6. https://doi.org/10.1109/IISA.2015.7387990 es_ES
dc.description.references Cledat, E., Cucci, D., 2017. Mapping gnss restricted environments with a drone tandem and indirect position control. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4, 1. https://doi.org/10.5194/isprs-annals-IV-2-W3-1-2017 es_ES
dc.description.references Cole, D. T., Thompson, P., Göktogan, A. H., Sukkarieh, S., 2010. System development and demonstration of a cooperative uav team for mapping and tracking. The International Journal of Robotics Research 29 (11), 1371-1399. https://doi.org/10.1177/0278364910364685 es_ES
dc.description.references Darrah, M., Trujillo, M. M., Speransky, K., Wathen, M., 2017. Optimized 3d mapping of a large area with structures using multiple multirotors. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 716-722. https://doi.org/10.1109/ICUAS.2017.7991414 es_ES
dc.description.references Erignac, C., 2007. An exhaustive swarming search strategy based on distributed pheromone maps. In: AIAA Infotech@ Aerospace 2007 Conference and Exhibit. p. 2822. https://doi.org/10.2514/6.2007-2822 es_ES
dc.description.references Fu, Z., Chen, Y., Ding, Y., He, D., 2019. Pollution source localization based on multi-uav cooperative communication. IEEE Access 7, 29304-29312. https://doi.org/10.1109/ACCESS.2019.2900475 es_ES
dc.description.references Fujisawa, R., Imamura, H., Hashimoto, T., Matsuno, F., 2008. Communication using pheromone field for multiple robots. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 1391-1396. https://doi.org/10.1109/IROS.2008.4650971 es_ES
dc.description.references Garcia-Aunon, P., Barrientos, A., 2018a. Comparison of heuristic algorithms in discrete search and surveillance tasks using aerial swarms. Applied Sciences 8 (5), 711. https://doi.org/10.3390/app8050711 es_ES
dc.description.references Garcia-Aunon, P., Barrientos, A., 2018b. Control optimization of an aerial robotic swarm in a search task and its adaptation to different scenarios. Journal of computational science 29, 107-118. https://doi.org/10.1016/j.jocs.2018.10.004 es_ES
dc.description.references Garcia-Aunon, P., del Cerro, J., Barrientos, A., 2019a. Behavior-based control for an aerial robotic swarm in surveillance missions. Sensors 19 (20), 4584. https://doi.org/10.3390/s19204584 es_ES
dc.description.references Garcia-Aunon, P., Roldan, J. J., Barrientos, A., 2019b. Monitoring traffic in future cities with aerial swarms: Developing and optimizing a behavior-based surveillance algorithm. Cognitive Systems Research 54, 273-286. https://doi.org/10.1016/j.cogsys.2018.10.031 es_ES
dc.description.references Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G., 2007. Alice in pheromone land: An experimental setup for the study of ant-like robots. In: 2007 IEEE Swarm Intelligence Symposium. IEEE, pp. 37-44. https://doi.org/10.1109/SIS.2007.368024 es_ES
dc.description.references George, J., Sujit, P., Sousa, J. B., 2011. Search strategies for multiple uav search and destroy missions. Journal of Intelligent & Robotic Systems 61 (1-4), 355-367. https://doi.org/10.1007/s10846-010-9486-8 es_ES
dc.description.references Hadaegh, F. Y., Chung, S.-J., Manohara, H. M., 2014. On development of 100- gram-class spacecraft for swarm applications. IEEE Systems Journal 10 (2), 673-684. https://doi.org/10.1109/JSYST.2014.2327972 es_ES
dc.description.references Han, J., Xu, Y., Di, L., Chen, Y., 2013. Low-cost multi-uav technologies for contour mapping of nuclear radiation field. Journal of Intelligent & Robotic Systems 70 (1-4), 401-410. https://doi.org/10.1007/s10846-012-9722-5 es_ES
dc.description.references Hauert, S., Winkler, L., Zufferey, J.-C., Floreano, D., 2008. Ant-based swarming with positionless micro air vehicles for communication relay. Swarm Intelligence 2 (2-4), 167-188. https://doi.org/10.1007/s11721-008-0013-5 es_ES
dc.description.references Hinzmann, T., Stastny, T., Conte, G., Doherty, P., Rudol, P., Wzorek, M., Galceran, E., Siegwart, R., Gilitschenski, I., 2016. Collaborative 3d reconstruction using heterogeneous uavs: System and experiments. In: International Symposium on Experimental Robotics. Springer, pp. 43-56. https://doi.org/10.1007/978-3-319-50115-4_5 es_ES
dc.description.references Ju, C., Son, H., 2018. Multiple uav systems for agricultural applications: control, implementation, and evaluation. Electronics 7 (9), 162. https://doi.org/10.3390/electronics7090162 es_ES
dc.description.references Kim, J. H., Kwon, J.-W., Seo, J., 2014. Multi-uav-based stereo vision system without gps for ground obstacle mapping to assist path planning of ugv. Electronics Letters 50 (20), 1431-1432. https://doi.org/10.1049/el.2014.2227 es_ES
dc.description.references Lanillos, P., Gan, S. K., Besada-Portas, E., Pajares, G., Sukkarieh, S., 2014. Multi-uav target search using decentralized gradient-based negotiation with expected observation. Information Sciences 282, 92-110. https://doi.org/10.1016/j.ins.2014.05.054 es_ES
dc.description.references Li, W., 2015. Persistent surveillance for a swarm of micro aerial vehicles by flocking algorithm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 229 (1), 185-194. https://doi.org/10.1177/0954410014529100 es_ES
dc.description.references Lyu, Y., Pan, Q., Zhang, Y., Zhao, C., Zhu, H., Tang, T., Liu, L., 2015. Simultaneously multi-uav mapping and control with visual servoing. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 125-131. https://doi.org/10.1109/ICUAS.2015.7152283 es_ES
dc.description.references Mahdoui, N., Frémont, V., Natalizio, E., 2017. Cooperative exploration strategy for micro-aerial vehicles fleet. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). IEEE, pp. 180-185. https://doi.org/10.1109/MFI.2017.8170426 es_ES
dc.description.references Maza, I., Ollero, A., 2007. Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems 6. Springer, pp. 221-230. https://doi.org/10.1007/978-4-431-35873-2_22 es_ES
dc.description.references Mirjan, A., Gramazio, F., Kohler, M., Augugliaro, F., D'Andrea, R., 2013. Architectural fabrication of tensile structures with flying machines. Green Design, Materials and Manufacturing Processes, 513-518. https://doi.org/10.1201/b15002-99 es_ES
dc.description.references Niedzielski, T., Jurecka, M., Mizinski, B., Remisz, J., Slopek, J., Spallek, W., Witek-Kasprzak, M., Kasprzak, Ł., Swierczynska-Chlasciak, M., 2018. A real-time field experiment on search and rescue operations assisted by unmanned aerial vehicles. Journal of Field Robotics 35 (6), 906-920. https://doi.org/10.1002/rob.21784 es_ES
dc.description.references Nigam, N., Bieniawski, S., Kroo, I., Vian, J., 2011. Control of multiple uavs for persistent surveillance: algorithm and flight test results. IEEE Transactions on Control Systems Technology 20 (5), 1236-1251. https://doi.org/10.1109/TCST.2011.2167331 es_ES
dc.description.references Odonkor, P., Ball, Z., Chowdhury, S., 2019. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping. Swarm and Evolutionary Computation 46, 52-68. https://doi.org/10.1016/j.swevo.2019.01.005 es_ES
dc.description.references Oh, S.-H., Suk, J., 2010. Evolutionary design of the controller for the search of area with obstacles using multiple uavs. In: ICCAS 2010. IEEE, pp. 2541- 2546. https://doi.org/10.1109/ICCAS.2010.5670230 es_ES
dc.description.references Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J. A., Jesus, M., 2018. Ant colony optimization for multi-uav minimum time search in uncertain domains. Applied Soft Computing 62, 789-806. https://doi.org/10.1016/j.asoc.2017.09.009 es_ES
dc.description.references Qu, Y., Zhang, Y., Zhang, Y., 2015. A uav solution of regional surveillance based on pheromones and artificial potential field theory. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 380-385. https://doi.org/10.1109/ICUAS.2015.7152313 es_ES
dc.description.references Rastgoftar, H., Atkins, E. M., 2018. Cooperative aerial lift and manipulation (calm). Aerospace Science and Technology 82, 105-118. https://doi.org/10.1016/j.ast.2018.09.005 es_ES
dc.description.references Reina, D., Tawfik, H., Toral, S., 2018. Multi-subpopulation evolutionary algorithms for coverage deployment of uav-networks. Ad Hoc Networks 68, 16-32. https://doi.org/10.1016/j.adhoc.2017.09.005 es_ES
dc.description.references Reuder, J., Jonassen, M. O., Olafsson, H., 2012. The small unmanned meteorological observer sumo: Recent developments and applications of a micro-uas for atmospheric boundary layer research. Acta Geophysica 60 (5), 1454- 1473. https://doi.org/10.2478/s11600-012-0042-8 es_ES
dc.description.references Reynolds, C. W., 1987. Flocks, herds and schools: A distributed behavioral model. Vol. 21. ACM. https://doi.org/10.1145/37402.37406 es_ES
dc.description.references Roldan, J. J., Garcia-Aunon, P., Peña-Tapia, E., Barrientos, A., 2019. Swarm-city project: Can an aerial swarm monitor traffic in a smart city? In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, pp. 862-867. https://doi.org/10.1109/PERCOMW.2019.8730677 es_ES
dc.description.references Santamaria, E., Segor, F., Tchouchenkov, I., 2013. Rapid aerial mapping with multiple heterogeneous unmanned vehicles. In: ISCRAM. Citeseer. es_ES
dc.description.references Saska, M., Chudoba, J., Preucil, L., Thomas, J., Loianno, G., Tresnak, A., Vonasek, V., Kumar, V., 2014. Autonomous deployment of swarms of microaerial vehicles in cooperative surveillance. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 584-595. https://doi.org/10.1109/ICUAS.2014.6842301 es_ES
dc.description.references Savkin, A. V., Huang, H., 2019. Asymptotically optimal deployment of drones for surveillance and monitoring. Sensors 19 (9), 2068. https://doi.org/10.3390/s19092068 es_ES
dc.description.references Schilling, F., Lecoeur, J., Schiano, F., Floreano, D., 2018. Learning visionbased cohesive flight in drone swarms. arXiv preprint arXiv:1809.00543. es_ES
dc.description.references Schmuck, P., Chli, M., 2017. Multi-uav collaborative monocular slam. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3863-3870. https://doi.org/10.1109/ICRA.2017.7989445 es_ES
dc.description.references Silic, M. B., Song, Z., Mohseni, K., 2018. Anisotropic flocking control of distributed multi-agent systems using fluid abstraction. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace. p. 2262. https://doi.org/10.2514/6.2018-2262 es_ES
dc.description.references Sreenath, K., Kumar, V., 2013. Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. rn 1 (r2), r3. https://doi.org/10.15607/RSS.2013.IX.011 es_ES
dc.description.references St-Onge, D., Kaufmann, M., Panerati, J., Ramtoula, B., Cao, Y., Coffey, E. B., Beltrame, G., 2019. Planetary exploration with robot teams. IEEE Robotics & Automation Magazine. es_ES
dc.description.references Stavros, E. N., Agha, A., Sirota, A., Quadrelli, M., Ebadi, K., Yun, K., 2019. Smoke sky-exploring new frontiers of unmanned aerial systems for wildland fire science and applications. arXiv preprint arXiv:1911.08288. es_ES
dc.description.references Techy, L., Schmale III, D. G., Woolsey, C. A., 2010. Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles. Journal of Field Robotics 27 (3), 335-343. https://doi.org/10.1002/rob.20335 es_ES
dc.description.references Tuna, G., Nefzi, B., Conte, G., 2014. Unmanned aerial vehicle-aided communications system for disaster recovery. Journal of Network and Computer Applications 41, 27-36. https://doi.org/10.1016/j.jnca.2013.10.002 es_ES
dc.description.references Twidwell, D., Allen, C. R., Detweiler, C., Higgins, J., Laney, C., Elbaum, S., 2016. Smokey comes of age: unmanned aerial systems for fire management. Frontiers in Ecology and the Environment 14 (6), 333-339. https://doi.org/10.1002/fee.1299 es_ES
dc.description.references Vasarhelyi, G., Viragh, C., Somorjai, G., Tarcai, N., Szorenyi, T., Nepusz, T., Vicsek, T., 2014. Outdoor flocking and formation flight with autonomous aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 3866-3873. https://doi.org/10.1109/IROS.2014.6943105 es_ES
dc.description.references Verdu, T., Hattenberger, G., Lacroix, S., 2019. Flight patterns for clouds exploration with a fleet of uavs. https://doi.org/10.1109/ICUAS.2019.8797953 es_ES
dc.description.references Waharte, S., Trigoni, N., 2010. Supporting search and rescue operations with uavs. In: 2010 International Conference on Emerging Security Technologies. IEEE, pp. 142-147. https://doi.org/10.1109/EST.2010.31 es_ES
dc.description.references Wang, Z., Singh, S., Pavone, M., Schwager, M., 2018. Cooperative object transport in 3d with multiple quadrotors using no peer communication. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1064-1071. https://doi.org/10.1109/ICRA.2018.8460742 es_ES
dc.description.references Zhao, N., Lu, W., Sheng, M., Chen, Y., Tang, J., Yu, F. R., Wong, K.-K., 2019. Uav-assisted emergency networks in disasters. IEEE Wireless Communications 26 (1), 45-51. https://doi.org/10.1109/MWC.2018.1800160 es_ES
dc.description.references Zheng, X., Wang, F., Li, Z., 2018. A multi-uav cooperative route planning methodology for 3d fine-resolution building model reconstruction. ISPRS journal of photogrammetry and remote sensing 146, 483-494. https://doi.org/10.1016/j.isprsjprs.2018.11.004 es_ES


This item appears in the following Collection(s)

Show simple item record