Maes, N., Meijer, M., Dam, N., Somers, B., Baya Toda, H., Bruneaux, G., … Manin, J. (2016). Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combustion and Flame, 174, 138-151. doi:10.1016/j.combustflame.2016.09.005
Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837
Benajes, J., Payri, R., Bardi, M., & Martí-Aldaraví, P. (2013). Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Applied Thermal Engineering, 58(1-2), 554-563. doi:10.1016/j.applthermaleng.2013.04.044
[+]
Maes, N., Meijer, M., Dam, N., Somers, B., Baya Toda, H., Bruneaux, G., … Manin, J. (2016). Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combustion and Flame, 174, 138-151. doi:10.1016/j.combustflame.2016.09.005
Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837
Benajes, J., Payri, R., Bardi, M., & Martí-Aldaraví, P. (2013). Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Applied Thermal Engineering, 58(1-2), 554-563. doi:10.1016/j.applthermaleng.2013.04.044
Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042
Naud, B., Novella, R., Pastor, J. M., & Winklinger, J. F. (2015). RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame, 162(4), 893-906. doi:10.1016/j.combustflame.2014.09.014
Pei, Y., Hawkes, E. R., Kook, S., Goldin, G. M., & Lu, T. (2015). Modelling n-dodecane spray and combustion with the transported probability density function method. Combustion and Flame, 162(5), 2006-2019. doi:10.1016/j.combustflame.2014.12.019
Desantes, J. M., García-Oliver, J. M., Novella, R., & Pérez-Sánchez, E. J. (2017). Application of an unsteady flamelet model in a RANS framework for spray A simulation. Applied Thermal Engineering, 117, 50-64. doi:10.1016/j.applthermaleng.2017.01.101
Pomraning, E., & Rutland, C. J. (2002). Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model. AIAA Journal, 40(4), 689-701. doi:10.2514/2.1701
Bharadwaj, N., Rutland, C. J., & Chang, S. (2009). Large eddy simulation modelling of spray-induced turbulence effects. International Journal of Engine Research, 10(2), 97-119. doi:10.1243/14680874jer02309
Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035
Pitsch, H. (2006). LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION. Annual Review of Fluid Mechanics, 38(1), 453-482. doi:10.1146/annurev.fluid.38.050304.092133
Maas, U., & Pope, S. B. (1992). Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame, 88(3-4), 239-264. doi:10.1016/0010-2180(92)90034-m
OIJEN, J. A. V., & GOEY, L. P. H. D. (2000). Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds. Combustion Science and Technology, 161(1), 113-137. doi:10.1080/00102200008935814
Gicquel, O., Darabiha, N., & Thévenin, D. (2000). Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 28(2), 1901-1908. doi:10.1016/s0082-0784(00)80594-9
PIERCE, C. D., & MOIN, P. (2004). Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 504, 73-97. doi:10.1017/s0022112004008213
Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 70-89. doi:10.1016/j.combustflame.2008.04.001
Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 90-107. doi:10.1016/j.combustflame.2008.04.015
Tillou, J., Michel, J.-B., Angelberger, C., Bekdemir, C., & Veynante, D. (2013). Large-Eddy Simulation of Diesel Spray Combustion with Exhaust Gas Recirculation. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 69(1), 155-165. doi:10.2516/ogst/2013139
Michel, J.-B., Colin, O., & Veynante, D. (2008). Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combustion and Flame, 152(1-2), 80-99. doi:10.1016/j.combustflame.2007.09.001
Tillou, J., Michel, J.-B., Angelberger, C., & Veynante, D. (2014). Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion. Combustion and Flame, 161(2), 525-540. doi:10.1016/j.combustflame.2013.09.006
Michel, J.-B., & Colin, O. (2013). A tabulated diffusion flame model applied to diesel engine simulations. International Journal of Engine Research, 15(3), 346-369. doi:10.1177/1468087413488590
Aubagnac-Karkar, D., Michel, J.-B., Colin, O., & Darabiha, N. (2017). Combustion and soot modelling of a high-pressure and high-temperature Dodecane spray. International Journal of Engine Research, 19(4), 434-448. doi:10.1177/1468087417714351
Wehrfritz, A., Kaario, O., Vuorinen, V., & Somers, B. (2016). Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds. Combustion and Flame, 167, 113-131. doi:10.1016/j.combustflame.2016.02.019
García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023
Tagliante, F., Malbec, L.-M., Bruneaux, G., Pickett, L. M., & Angelberger, C. (2018). Experimental study of the stabilization mechanism of a lifted Diesel-type flame using combined optical diagnostics and laser-induced plasma ignition. Combustion and Flame, 197, 215-226. doi:10.1016/j.combustflame.2018.07.024
Pandurangi, S. S., Bolla, M., Wright, Y. M., Boulouchos, K., Skeen, S. A., Manin, J., & Pickett, L. M. (2016). Onset and progression of soot in high-pressure n-dodecane sprays under diesel engine conditions. International Journal of Engine Research, 18(5-6), 436-452. doi:10.1177/1468087416661041
Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370
Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309
Narayanaswamy, K., Pepiot, P., & Pitsch, H. (2014). A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 161(4), 866-884. doi:10.1016/j.combustflame.2013.10.012
Frassoldati, A., D’Errico, G., Lucchini, T., Stagni, A., Cuoci, A., Faravelli, T., … Ranzi, E. (2015). Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations. Combustion and Flame, 162(10), 3991-4007. doi:10.1016/j.combustflame.2015.07.039
Bharadwaj, N., & Rutland, C. J. (2010). A LARGE-EDDY SIMULATION STUDY OF SUB-GRID TWO-PHASE INTERACTION IN PARTICLE-LADEN FLOWS AND DIESEL ENGINE SPRAYS. Atomization and Sprays, 20(8), 673-695. doi:10.1615/atomizspr.v20.i8.20
Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40
Pérez Sánchez, E. J. (s. f.). Application of a flamelet-based combustion model to diesel-like reacting sprays. doi:10.4995/thesis/10251/117316
Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3), 319-339. doi:10.1016/0360-1285(84)90114-x
Peters, N. (2000). Turbulent Combustion. doi:10.1017/cbo9780511612701
FIORINA, B., GICQUEL, O., VERVISCH, L., CARPENTIER, S., & DARABIHA, N. (2005). Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combustion and Flame, 140(3), 147-160. doi:10.1016/j.combustflame.2004.11.002
Payri, F., Novella, R., Pastor, J. M., & Pérez-Sánchez, E. J. (2017). Evaluation of the approximated diffusion flamelet concept using fuels with different chemical complexity. Applied Mathematical Modelling, 49, 354-374. doi:10.1016/j.apm.2017.04.024
Pera, C., Colin, O., & Jay, S. (2009). Development of a FPI Detailed Chemistry Tabulation Methodology for Internal Combustion Engines. Oil & Gas Science and Technology - Revue de l’IFP, 64(3), 243-258. doi:10.2516/ogst/2009002
Mastorakos, E. (2009). Ignition of turbulent non-premixed flames. Progress in Energy and Combustion Science, 35(1), 57-97. doi:10.1016/j.pecs.2008.07.002
Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686
Olbricht, C., Ketelheun, A., Hahn, F., & Janicka, J. (2010). Assessing the Predictive Capabilities of Combustion LES as Applied to the Sydney Flame Series. Flow, Turbulence and Combustion, 85(3-4), 513-547. doi:10.1007/s10494-010-9300-5
Novella, R., García, A., Pastor, J. M., & Domenech, V. (2011). The role of detailed chemical kinetics on CFD diesel spray ignition and combustion modelling. Mathematical and Computer Modelling, 54(7-8), 1706-1719. doi:10.1016/j.mcm.2010.12.048
Bhattacharjee, S., & Haworth, D. C. (2013). Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 160(10), 2083-2102. doi:10.1016/j.combustflame.2013.05.003
Tagliante, F., Poinsot, T., Pickett, L. M., Pepiot, P., Malbec, L.-M., Bruneaux, G., & Angelberger, C. (2019). A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments. Combustion and Flame, 201, 65-77. doi:10.1016/j.combustflame.2018.12.007
Duwig, C., & Fuchs, L. (2008). Large Eddy Simulation of a H2/N2Lifted Flame in a Vitiated Co-Flow. Combustion Science and Technology, 180(3), 453-480. doi:10.1080/00102200701741327
Gong, C., Jangi, M., & Bai, X.-S. (2014). Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 136, 373-381. doi:10.1016/j.apenergy.2014.09.030
Pei, Y., Som, S., Pomraning, E., Senecal, P. K., Skeen, S. A., Manin, J., & Pickett, L. M. (2015). Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combustion and Flame, 162(12), 4442-4455. doi:10.1016/j.combustflame.2015.08.010
Kahila, H., Wehrfritz, A., Kaario, O., Ghaderi Masouleh, M., Maes, N., Somers, B., & Vuorinen, V. (2018). Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 191, 142-159. doi:10.1016/j.combustflame.2018.01.004
[-]