- -

Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds

Mostrar el registro completo del ítem

González, CM.; Llorca Martínez, ME.; Quiles Chuliá, MD.; Hernando Hernando, MI.; Moraga Ballesteros, G. (2020). Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds. LWT - Food Science and Technology. 130:1-8. https://doi.org/10.1016/j.lwt.2020.109633

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170957

Ficheros en el ítem

Metadatos del ítem

Título: Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds
Autor: González, Cristina M. Llorca Martínez, Mª Empar Quiles Chuliá, Mª Desamparados Hernando Hernando, Mª Isabel Moraga Ballesteros, Gemma
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] The use of persimmon variety "Rojo Brillante", has seen a great expansion in recent years. Its production is associated with substantial amounts of post-harvest waste, therefore, development of products that allow its ...[+]
Palabras clave: Kaki , Sorption isotherm , Tannins , Physicochemical properties , Freeze-drying
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
LWT - Food Science and Technology. (issn: 0023-6438 )
DOI: 10.1016/j.lwt.2020.109633
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.lwt.2020.109633
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//RTA2017-00045-C02-02/ES/Diseño de alimentos de alto valor nutritivo con ingredientes obtenidos a partir del destrío postcosecha de caqui/
Agradecimientos:
The authors thank the Ministerio de Ciencia, Innovacion y Universidades for the financial support given throughout Project RTA2017-00045-C02-02. They would also like to thank Phillip Bentley for assistance in correcting ...[+]
Tipo: Artículo

References

ARYA, S. S., NATESAN, V., PARIHAR, D. B., & VIJAYARAGHAVAN, P. K. (2007). Stability of carotenoids in dehydrated carrots. International Journal of Food Science & Technology, 14(6), 579-586. doi:10.1111/j.1365-2621.1979.tb00904.x

Boudhrioua, N., Michon, C., Cuvelier, G., & Bonazzi, C. (2002). Influence of ripeness and air temperature on changes in banana texture during drying. Journal of Food Engineering, 55(2), 115-121. doi:10.1016/s0260-8774(02)00025-0

Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 [+]
ARYA, S. S., NATESAN, V., PARIHAR, D. B., & VIJAYARAGHAVAN, P. K. (2007). Stability of carotenoids in dehydrated carrots. International Journal of Food Science & Technology, 14(6), 579-586. doi:10.1111/j.1365-2621.1979.tb00904.x

Boudhrioua, N., Michon, C., Cuvelier, G., & Bonazzi, C. (2002). Influence of ripeness and air temperature on changes in banana texture during drying. Journal of Food Engineering, 55(2), 115-121. doi:10.1016/s0260-8774(02)00025-0

Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025

Cheng, A.-W., Xie, H.-X., Qi, Y., Liu, C., Guo, X., Sun, J.-Y., & Liu, L.-N. (2017). Effects of storage time and temperature on polyphenolic content and qualitative characteristics of freeze-dried and spray-dried bayberry powder. LWT, 78, 235-240. doi:10.1016/j.lwt.2016.12.027

Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147. doi:10.1016/j.foodchem.2011.05.093

Gorinstein, S., Zachwieja, Z., Folta, M., Barton, H., Piotrowicz, J., Zemser, M., … Màrtín-Belloso, O. (2001). Comparative Contents of Dietary Fiber, Total Phenolics, and Minerals in Persimmons and Apples. Journal of Agricultural and Food Chemistry, 49(2), 952-957. doi:10.1021/jf000947k

Hernández-Carrión, M., Vázquez-Gutiérrez, J. L., Hernando, I., & Quiles, A. (2013). Impact of High Hydrostatic Pressure and Pasteurization on the Structure and the Extractability of Bioactive Compounds of Persimmon «Rojo Brillante». Journal of Food Science, 79(1), C32-C38. doi:10.1111/1750-3841.12321

Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2(1), 41-60. doi:10.1007/s12161-008-9067-7

Krokida, M. K., Karathanos, V. T., & Maroulis, Z. B. (1998). Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. Journal of Food Engineering, 35(4), 369-380. doi:10.1016/s0260-8774(98)00031-4

LAVELLI, V., ZANONI, B., & ZANIBONI, A. (2007). Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chemistry, 104(4), 1705-1711. doi:10.1016/j.foodchem.2007.03.033

Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577-1587. doi:10.1016/j.foodchem.2012.02.052

Ling, H.-I., Birch, J., & Lim, M. (2005). The glass transition approach to determination of drying protocols for colour stability in dehydrated pear slices. International Journal of Food Science and Technology, 40(9), 921-927. doi:10.1111/j.1365-2621.2005.00996.x

Moraga, G., Igual, M., García-Martínez, E., Mosquera, L. H., & Martínez-Navarrete, N. (2012). Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit powder. Journal of Food Engineering, 112(3), 191-199. doi:10.1016/j.jfoodeng.2012.04.002

Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72(2), 147-156. doi:10.1016/j.jfoodeng.2004.11.031

Moraga, G., Talens, P., Moraga, M. J., & Martínez-Navarrete, N. (2011). Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. Journal of Food Engineering, 106(3), 212-219. doi:10.1016/j.jfoodeng.2011.05.009

Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2010). Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder. Journal of Food Engineering, 97(1), 72-78. doi:10.1016/j.jfoodeng.2009.09.017

Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2), 201-206. doi:10.1016/j.foodres.2011.05.019

Munera, S., Besada, C., Aleixos, N., Talens, P., Salvador, A., Sun, D.-W., … Blasco, J. (2017). Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT, 77, 241-248. doi:10.1016/j.lwt.2016.11.063

Pérez-Burillo, S., Oliveras, M. J., Quesada, J., Rufián-Henares, J. A., & Pastoriza, S. (2018). Relationship between composition and bioactivity of persimmon and kiwifruit. Food Research International, 105, 461-472. doi:10.1016/j.foodres.2017.11.022

Roos, Y. (1995). Characterization of food polymers using state diagrams. Journal of Food Engineering, 24(3), 339-360. doi:10.1016/0260-8774(95)90050-l

Salvador, A., Arnal, L., Besada, C., Larrea, V., Hernando, I., & Pérez-Munuera, I. (2008). Reduced effectiveness of the treatment for removing astringency in persimmon fruit when stored at 15°C: Physiological and microstructural study. Postharvest Biology and Technology, 49(3), 340-347. doi:10.1016/j.postharvbio.2008.01.015

Sobral, P. J. A., Telis, V. R. N., Habitante, A. M. Q. B., & Sereno, A. (2001). Phase diagram for freeze-dried persimmon. Thermochimica Acta, 376(1), 83-89. doi:10.1016/s0040-6031(01)00533-0

Syamaladevi, R. M., Sablani, S. S., Tang, J., Powers, J., & Swanson, B. G. (2011). Stability of Anthocyanins in Frozen and Freeze-Dried Raspberries during Long-Term Storage: In Relation to Glass Transition. Journal of Food Science, 76(6), E414-E421. doi:10.1111/j.1750-3841.2011.02249.x

Telis, V. R. ., Gabas, A. ., Menegalli, F. ., & Telis-Romero, J. (2000). Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochimica Acta, 343(1-2), 49-56. doi:10.1016/s0040-6031(99)00379-2

Telis, V. R. N., & Martínez-Navarrete, N. (2010). Application of compression test in analysis of mechanical and color changes in grapefruit juice powder as related to glass transition and water activity. LWT - Food Science and Technology, 43(5), 744-751. doi:10.1016/j.lwt.2009.12.007

Tessmer, M. A., Besada, C., Hernando, I., Appezzato-da-Glória, B., Quiles, A., & Salvador, A. (2016). Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biology and Technology, 120, 52-60. doi:10.1016/j.postharvbio.2016.05.014

Veberic, R., Jurhar, J., Mikulic-Petkovsek, M., Stampar, F., & Schmitzer, V. (2010). Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chemistry, 119(2), 477-483. doi:10.1016/j.foodchem.2009.06.044

Wu, R., Frei, B., Kennedy, J. A., & Zhao, Y. (2010). Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of ‘Marion’ and ‘Evergreen’ blackberries. LWT - Food Science and Technology, 43(8), 1253-1264. doi:10.1016/j.lwt.2010.04.002

Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. LWT - Food Science and Technology, 42(10), 1688-1695. doi:10.1016/j.lwt.2009.05.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem