- -

Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González, Cristina M. es_ES
dc.contributor.author Llorca Martínez, Mª Empar es_ES
dc.contributor.author Quiles Chuliá, Mª Desamparados es_ES
dc.contributor.author Hernando Hernando, Mª Isabel es_ES
dc.contributor.author Moraga Ballesteros, Gemma es_ES
dc.date.accessioned 2021-07-30T03:31:05Z
dc.date.available 2021-07-30T03:31:05Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 0023-6438 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170957
dc.description.abstract [EN] The use of persimmon variety "Rojo Brillante", has seen a great expansion in recent years. Its production is associated with substantial amounts of post-harvest waste, therefore, development of products that allow its valorisation are of great interest. In this study, a freeze-drying technique was used to obtain a high quality product. Freeze-dried samples were conditioned in a range of water activities (0.113-0.680) at 20 degrees C at equilibrium, allowing for products of different water content. Water sorption isotherms were determined from persimmon slices, with BET (Brunauer, Emmett, and Teller) and GAB (Guggenheim, Anderson, and de Boer) models applied to the sorption data. The glass transition was analysed using differential scanning calorimetry (DSC); the Gordon & Taylor equation modelled the water plasticisation effect. Results confirmed a critical water activity (CWA) of 0.165 and a critical water content (CWC) of 0.0312 g water/g product. Below these critical values, the glassy state of the amorphous matrix and the crispness were guaranteed. This consequently avoids an increase in the rate of deterioration reactions, texture and colour changes, and the loss of the fruit bioactive compounds. es_ES
dc.description.sponsorship The authors thank the Ministerio de Ciencia, Innovacion y Universidades for the financial support given throughout Project RTA2017-00045-C02-02. They would also like to thank Phillip Bentley for assistance in correcting the English manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof LWT - Food Science and Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Kaki es_ES
dc.subject Sorption isotherm es_ES
dc.subject Tannins es_ES
dc.subject Physicochemical properties es_ES
dc.subject Freeze-drying es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.lwt.2020.109633 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTA2017-00045-C02-02/ES/Diseño de alimentos de alto valor nutritivo con ingredientes obtenidos a partir del destrío postcosecha de caqui/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation González, CM.; Llorca Martínez, ME.; Quiles Chuliá, MD.; Hernando Hernando, MI.; Moraga Ballesteros, G. (2020). Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds. LWT - Food Science and Technology. 130:1-8. https://doi.org/10.1016/j.lwt.2020.109633 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.lwt.2020.109633 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 130 es_ES
dc.relation.pasarela S\413356 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references ARYA, S. S., NATESAN, V., PARIHAR, D. B., & VIJAYARAGHAVAN, P. K. (2007). Stability of carotenoids in dehydrated carrots. International Journal of Food Science & Technology, 14(6), 579-586. doi:10.1111/j.1365-2621.1979.tb00904.x es_ES
dc.description.references Boudhrioua, N., Michon, C., Cuvelier, G., & Bonazzi, C. (2002). Influence of ripeness and air temperature on changes in banana texture during drying. Journal of Food Engineering, 55(2), 115-121. doi:10.1016/s0260-8774(02)00025-0 es_ES
dc.description.references Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 es_ES
dc.description.references Cheng, A.-W., Xie, H.-X., Qi, Y., Liu, C., Guo, X., Sun, J.-Y., & Liu, L.-N. (2017). Effects of storage time and temperature on polyphenolic content and qualitative characteristics of freeze-dried and spray-dried bayberry powder. LWT, 78, 235-240. doi:10.1016/j.lwt.2016.12.027 es_ES
dc.description.references Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147. doi:10.1016/j.foodchem.2011.05.093 es_ES
dc.description.references Gorinstein, S., Zachwieja, Z., Folta, M., Barton, H., Piotrowicz, J., Zemser, M., … Màrtín-Belloso, O. (2001). Comparative Contents of Dietary Fiber, Total Phenolics, and Minerals in Persimmons and Apples. Journal of Agricultural and Food Chemistry, 49(2), 952-957. doi:10.1021/jf000947k es_ES
dc.description.references Hernández-Carrión, M., Vázquez-Gutiérrez, J. L., Hernando, I., & Quiles, A. (2013). Impact of High Hydrostatic Pressure and Pasteurization on the Structure and the Extractability of Bioactive Compounds of Persimmon «Rojo Brillante». Journal of Food Science, 79(1), C32-C38. doi:10.1111/1750-3841.12321 es_ES
dc.description.references Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2(1), 41-60. doi:10.1007/s12161-008-9067-7 es_ES
dc.description.references Krokida, M. K., Karathanos, V. T., & Maroulis, Z. B. (1998). Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. Journal of Food Engineering, 35(4), 369-380. doi:10.1016/s0260-8774(98)00031-4 es_ES
dc.description.references LAVELLI, V., ZANONI, B., & ZANIBONI, A. (2007). Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chemistry, 104(4), 1705-1711. doi:10.1016/j.foodchem.2007.03.033 es_ES
dc.description.references Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577-1587. doi:10.1016/j.foodchem.2012.02.052 es_ES
dc.description.references Ling, H.-I., Birch, J., & Lim, M. (2005). The glass transition approach to determination of drying protocols for colour stability in dehydrated pear slices. International Journal of Food Science and Technology, 40(9), 921-927. doi:10.1111/j.1365-2621.2005.00996.x es_ES
dc.description.references Moraga, G., Igual, M., García-Martínez, E., Mosquera, L. H., & Martínez-Navarrete, N. (2012). Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit powder. Journal of Food Engineering, 112(3), 191-199. doi:10.1016/j.jfoodeng.2012.04.002 es_ES
dc.description.references Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72(2), 147-156. doi:10.1016/j.jfoodeng.2004.11.031 es_ES
dc.description.references Moraga, G., Talens, P., Moraga, M. J., & Martínez-Navarrete, N. (2011). Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. Journal of Food Engineering, 106(3), 212-219. doi:10.1016/j.jfoodeng.2011.05.009 es_ES
dc.description.references Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2010). Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder. Journal of Food Engineering, 97(1), 72-78. doi:10.1016/j.jfoodeng.2009.09.017 es_ES
dc.description.references Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2), 201-206. doi:10.1016/j.foodres.2011.05.019 es_ES
dc.description.references Munera, S., Besada, C., Aleixos, N., Talens, P., Salvador, A., Sun, D.-W., … Blasco, J. (2017). Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT, 77, 241-248. doi:10.1016/j.lwt.2016.11.063 es_ES
dc.description.references Pérez-Burillo, S., Oliveras, M. J., Quesada, J., Rufián-Henares, J. A., & Pastoriza, S. (2018). Relationship between composition and bioactivity of persimmon and kiwifruit. Food Research International, 105, 461-472. doi:10.1016/j.foodres.2017.11.022 es_ES
dc.description.references Roos, Y. (1995). Characterization of food polymers using state diagrams. Journal of Food Engineering, 24(3), 339-360. doi:10.1016/0260-8774(95)90050-l es_ES
dc.description.references Salvador, A., Arnal, L., Besada, C., Larrea, V., Hernando, I., & Pérez-Munuera, I. (2008). Reduced effectiveness of the treatment for removing astringency in persimmon fruit when stored at 15°C: Physiological and microstructural study. Postharvest Biology and Technology, 49(3), 340-347. doi:10.1016/j.postharvbio.2008.01.015 es_ES
dc.description.references Sobral, P. J. A., Telis, V. R. N., Habitante, A. M. Q. B., & Sereno, A. (2001). Phase diagram for freeze-dried persimmon. Thermochimica Acta, 376(1), 83-89. doi:10.1016/s0040-6031(01)00533-0 es_ES
dc.description.references Syamaladevi, R. M., Sablani, S. S., Tang, J., Powers, J., & Swanson, B. G. (2011). Stability of Anthocyanins in Frozen and Freeze-Dried Raspberries during Long-Term Storage: In Relation to Glass Transition. Journal of Food Science, 76(6), E414-E421. doi:10.1111/j.1750-3841.2011.02249.x es_ES
dc.description.references Telis, V. R. ., Gabas, A. ., Menegalli, F. ., & Telis-Romero, J. (2000). Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochimica Acta, 343(1-2), 49-56. doi:10.1016/s0040-6031(99)00379-2 es_ES
dc.description.references Telis, V. R. N., & Martínez-Navarrete, N. (2010). Application of compression test in analysis of mechanical and color changes in grapefruit juice powder as related to glass transition and water activity. LWT - Food Science and Technology, 43(5), 744-751. doi:10.1016/j.lwt.2009.12.007 es_ES
dc.description.references Tessmer, M. A., Besada, C., Hernando, I., Appezzato-da-Glória, B., Quiles, A., & Salvador, A. (2016). Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biology and Technology, 120, 52-60. doi:10.1016/j.postharvbio.2016.05.014 es_ES
dc.description.references Veberic, R., Jurhar, J., Mikulic-Petkovsek, M., Stampar, F., & Schmitzer, V. (2010). Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chemistry, 119(2), 477-483. doi:10.1016/j.foodchem.2009.06.044 es_ES
dc.description.references Wu, R., Frei, B., Kennedy, J. A., & Zhao, Y. (2010). Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of ‘Marion’ and ‘Evergreen’ blackberries. LWT - Food Science and Technology, 43(8), 1253-1264. doi:10.1016/j.lwt.2010.04.002 es_ES
dc.description.references Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. LWT - Food Science and Technology, 42(10), 1688-1695. doi:10.1016/j.lwt.2009.05.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem