Mostrar el registro sencillo del ítem
dc.contributor.author | González, Cristina M. | es_ES |
dc.contributor.author | Llorca Martínez, Mª Empar | es_ES |
dc.contributor.author | Quiles Chuliá, Mª Desamparados | es_ES |
dc.contributor.author | Hernando Hernando, Mª Isabel | es_ES |
dc.contributor.author | Moraga Ballesteros, Gemma | es_ES |
dc.date.accessioned | 2021-07-30T03:31:05Z | |
dc.date.available | 2021-07-30T03:31:05Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 0023-6438 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170957 | |
dc.description.abstract | [EN] The use of persimmon variety "Rojo Brillante", has seen a great expansion in recent years. Its production is associated with substantial amounts of post-harvest waste, therefore, development of products that allow its valorisation are of great interest. In this study, a freeze-drying technique was used to obtain a high quality product. Freeze-dried samples were conditioned in a range of water activities (0.113-0.680) at 20 degrees C at equilibrium, allowing for products of different water content. Water sorption isotherms were determined from persimmon slices, with BET (Brunauer, Emmett, and Teller) and GAB (Guggenheim, Anderson, and de Boer) models applied to the sorption data. The glass transition was analysed using differential scanning calorimetry (DSC); the Gordon & Taylor equation modelled the water plasticisation effect. Results confirmed a critical water activity (CWA) of 0.165 and a critical water content (CWC) of 0.0312 g water/g product. Below these critical values, the glassy state of the amorphous matrix and the crispness were guaranteed. This consequently avoids an increase in the rate of deterioration reactions, texture and colour changes, and the loss of the fruit bioactive compounds. | es_ES |
dc.description.sponsorship | The authors thank the Ministerio de Ciencia, Innovacion y Universidades for the financial support given throughout Project RTA2017-00045-C02-02. They would also like to thank Phillip Bentley for assistance in correcting the English manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | LWT - Food Science and Technology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Kaki | es_ES |
dc.subject | Sorption isotherm | es_ES |
dc.subject | Tannins | es_ES |
dc.subject | Physicochemical properties | es_ES |
dc.subject | Freeze-drying | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.lwt.2020.109633 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTA2017-00045-C02-02/ES/Diseño de alimentos de alto valor nutritivo con ingredientes obtenidos a partir del destrío postcosecha de caqui/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | González, CM.; Llorca Martínez, ME.; Quiles Chuliá, MD.; Hernando Hernando, MI.; Moraga Ballesteros, G. (2020). Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds. LWT - Food Science and Technology. 130:1-8. https://doi.org/10.1016/j.lwt.2020.109633 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.lwt.2020.109633 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 130 | es_ES |
dc.relation.pasarela | S\413356 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | ARYA, S. S., NATESAN, V., PARIHAR, D. B., & VIJAYARAGHAVAN, P. K. (2007). Stability of carotenoids in dehydrated carrots. International Journal of Food Science & Technology, 14(6), 579-586. doi:10.1111/j.1365-2621.1979.tb00904.x | es_ES |
dc.description.references | Boudhrioua, N., Michon, C., Cuvelier, G., & Bonazzi, C. (2002). Influence of ripeness and air temperature on changes in banana texture during drying. Journal of Food Engineering, 55(2), 115-121. doi:10.1016/s0260-8774(02)00025-0 | es_ES |
dc.description.references | Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 | es_ES |
dc.description.references | Cheng, A.-W., Xie, H.-X., Qi, Y., Liu, C., Guo, X., Sun, J.-Y., & Liu, L.-N. (2017). Effects of storage time and temperature on polyphenolic content and qualitative characteristics of freeze-dried and spray-dried bayberry powder. LWT, 78, 235-240. doi:10.1016/j.lwt.2016.12.027 | es_ES |
dc.description.references | Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147. doi:10.1016/j.foodchem.2011.05.093 | es_ES |
dc.description.references | Gorinstein, S., Zachwieja, Z., Folta, M., Barton, H., Piotrowicz, J., Zemser, M., … Màrtín-Belloso, O. (2001). Comparative Contents of Dietary Fiber, Total Phenolics, and Minerals in Persimmons and Apples. Journal of Agricultural and Food Chemistry, 49(2), 952-957. doi:10.1021/jf000947k | es_ES |
dc.description.references | Hernández-Carrión, M., Vázquez-Gutiérrez, J. L., Hernando, I., & Quiles, A. (2013). Impact of High Hydrostatic Pressure and Pasteurization on the Structure and the Extractability of Bioactive Compounds of Persimmon «Rojo Brillante». Journal of Food Science, 79(1), C32-C38. doi:10.1111/1750-3841.12321 | es_ES |
dc.description.references | Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2(1), 41-60. doi:10.1007/s12161-008-9067-7 | es_ES |
dc.description.references | Krokida, M. K., Karathanos, V. T., & Maroulis, Z. B. (1998). Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. Journal of Food Engineering, 35(4), 369-380. doi:10.1016/s0260-8774(98)00031-4 | es_ES |
dc.description.references | LAVELLI, V., ZANONI, B., & ZANIBONI, A. (2007). Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chemistry, 104(4), 1705-1711. doi:10.1016/j.foodchem.2007.03.033 | es_ES |
dc.description.references | Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577-1587. doi:10.1016/j.foodchem.2012.02.052 | es_ES |
dc.description.references | Ling, H.-I., Birch, J., & Lim, M. (2005). The glass transition approach to determination of drying protocols for colour stability in dehydrated pear slices. International Journal of Food Science and Technology, 40(9), 921-927. doi:10.1111/j.1365-2621.2005.00996.x | es_ES |
dc.description.references | Moraga, G., Igual, M., García-Martínez, E., Mosquera, L. H., & Martínez-Navarrete, N. (2012). Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit powder. Journal of Food Engineering, 112(3), 191-199. doi:10.1016/j.jfoodeng.2012.04.002 | es_ES |
dc.description.references | Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72(2), 147-156. doi:10.1016/j.jfoodeng.2004.11.031 | es_ES |
dc.description.references | Moraga, G., Talens, P., Moraga, M. J., & Martínez-Navarrete, N. (2011). Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. Journal of Food Engineering, 106(3), 212-219. doi:10.1016/j.jfoodeng.2011.05.009 | es_ES |
dc.description.references | Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2010). Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder. Journal of Food Engineering, 97(1), 72-78. doi:10.1016/j.jfoodeng.2009.09.017 | es_ES |
dc.description.references | Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2), 201-206. doi:10.1016/j.foodres.2011.05.019 | es_ES |
dc.description.references | Munera, S., Besada, C., Aleixos, N., Talens, P., Salvador, A., Sun, D.-W., … Blasco, J. (2017). Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT, 77, 241-248. doi:10.1016/j.lwt.2016.11.063 | es_ES |
dc.description.references | Pérez-Burillo, S., Oliveras, M. J., Quesada, J., Rufián-Henares, J. A., & Pastoriza, S. (2018). Relationship between composition and bioactivity of persimmon and kiwifruit. Food Research International, 105, 461-472. doi:10.1016/j.foodres.2017.11.022 | es_ES |
dc.description.references | Roos, Y. (1995). Characterization of food polymers using state diagrams. Journal of Food Engineering, 24(3), 339-360. doi:10.1016/0260-8774(95)90050-l | es_ES |
dc.description.references | Salvador, A., Arnal, L., Besada, C., Larrea, V., Hernando, I., & Pérez-Munuera, I. (2008). Reduced effectiveness of the treatment for removing astringency in persimmon fruit when stored at 15°C: Physiological and microstructural study. Postharvest Biology and Technology, 49(3), 340-347. doi:10.1016/j.postharvbio.2008.01.015 | es_ES |
dc.description.references | Sobral, P. J. A., Telis, V. R. N., Habitante, A. M. Q. B., & Sereno, A. (2001). Phase diagram for freeze-dried persimmon. Thermochimica Acta, 376(1), 83-89. doi:10.1016/s0040-6031(01)00533-0 | es_ES |
dc.description.references | Syamaladevi, R. M., Sablani, S. S., Tang, J., Powers, J., & Swanson, B. G. (2011). Stability of Anthocyanins in Frozen and Freeze-Dried Raspberries during Long-Term Storage: In Relation to Glass Transition. Journal of Food Science, 76(6), E414-E421. doi:10.1111/j.1750-3841.2011.02249.x | es_ES |
dc.description.references | Telis, V. R. ., Gabas, A. ., Menegalli, F. ., & Telis-Romero, J. (2000). Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochimica Acta, 343(1-2), 49-56. doi:10.1016/s0040-6031(99)00379-2 | es_ES |
dc.description.references | Telis, V. R. N., & Martínez-Navarrete, N. (2010). Application of compression test in analysis of mechanical and color changes in grapefruit juice powder as related to glass transition and water activity. LWT - Food Science and Technology, 43(5), 744-751. doi:10.1016/j.lwt.2009.12.007 | es_ES |
dc.description.references | Tessmer, M. A., Besada, C., Hernando, I., Appezzato-da-Glória, B., Quiles, A., & Salvador, A. (2016). Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biology and Technology, 120, 52-60. doi:10.1016/j.postharvbio.2016.05.014 | es_ES |
dc.description.references | Veberic, R., Jurhar, J., Mikulic-Petkovsek, M., Stampar, F., & Schmitzer, V. (2010). Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chemistry, 119(2), 477-483. doi:10.1016/j.foodchem.2009.06.044 | es_ES |
dc.description.references | Wu, R., Frei, B., Kennedy, J. A., & Zhao, Y. (2010). Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of ‘Marion’ and ‘Evergreen’ blackberries. LWT - Food Science and Technology, 43(8), 1253-1264. doi:10.1016/j.lwt.2010.04.002 | es_ES |
dc.description.references | Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. LWT - Food Science and Technology, 42(10), 1688-1695. doi:10.1016/j.lwt.2009.05.010 | es_ES |