Alexandrova, I. V., Zhabko, A. P., 2018. A new LKF approach to stability analysis of linear systems with uncertain delays. Automatica 91, 173-178. https://doi.org/10.1016/j.automatica.2018.01.012
Arismendi-Valle, H., Melchor-Aguilar, D., 2019. On the Lyapunov matrices for integral delay systems. Int. J. of Systems Science 50 (6), 1190-1201. https://doi.org/10.1080/00207721.2019.1597943
Bejarano, F. J., 2021. Zero dynamics normal form and disturbance decoupling of commensurate and distributed time-delay systems. Automatica129, 109634. https://doi.org/10.1016/j.automatica.2021.109634
[+]
Alexandrova, I. V., Zhabko, A. P., 2018. A new LKF approach to stability analysis of linear systems with uncertain delays. Automatica 91, 173-178. https://doi.org/10.1016/j.automatica.2018.01.012
Arismendi-Valle, H., Melchor-Aguilar, D., 2019. On the Lyapunov matrices for integral delay systems. Int. J. of Systems Science 50 (6), 1190-1201. https://doi.org/10.1080/00207721.2019.1597943
Bejarano, F. J., 2021. Zero dynamics normal form and disturbance decoupling of commensurate and distributed time-delay systems. Automatica129, 109634. https://doi.org/10.1016/j.automatica.2021.109634
Bejarano, F. J., Zheng, G., 2017. Unknown input functional observability of descriptor systems with neutral and distributed delay effects. Automatica 85, 186-192. https://doi.org/10.1016/j.automatica.2017.07.044
Califano, C., Marquez-Martínez, L. A., Moog, C. H., 2013. Linearization of time-delay systems by input output injection and output transformation. Automatica 49 (6), 1932-1940. https://doi.org/10.1016/j.automatica.2013.03.001
Castaños, F., Estrada, E., Mondié, S., Ramírez, A., 2018. Passivity-based PI control of first-order systems with I/O communication delays: a frequency domain analysis. Int. J. of Control 91 (11), 2549-2562. https://doi.org/10.1080/00207179.2017.1327083
Castaños, F., Mondié, S., 2021. Observer-based predictor for a susceptible-infectious-recovered model with delays: an optimal-control case study. Int. J. of Robust and Nonlinear Control 31 (11), 5118-5133. https://doi.org/10.1002/rnc.5522
Cuvas, C., Mondie, S., 2016. Necessary stability conditions for delay systems with multiple pointwise and distributed delays. IEEE Trans. on Automatic Control 61 (7), 1987-1994. https://doi.org/10.1109/TAC.2015.2487478
Cuvas, C., Ramírez, A., Juárez, L., Mondié, S., 2019. Scanning the space of parameters for stability regions of a class of time-delay systems; a Lyapunovmatrix approach. Delays and Interconnections: Methodology, Algorithmsand Applications. https://doi.org/10.1007/978-3-030-11554-8_10
Cuvas, C., Santos-Sánchez, O.-J., Ordaz, P., Rodríguez-Guerrero, L., 2021. Suboptimal control for systems with commensurate and distributed delays of neutral type. Int. J. of Robust and Nonlinear Control n/a (n/a). https://doi.org/10.1002/rnc.5739
Egorov, A. V., 2014. A new necessary and sufficient stability condition for linear time-delay systems. In: Proceedings of the 19th IFAC World Congress. Cape Town, South Africa, pp. 11018-11023. https://doi.org/10.3182/20140824-6-ZA-1003.02677
Egorov, A. V., 2016. A finite necessary and sufficient stability condition for linear retarded type systems. In: Proceedings of the 55th IEEE Conference on Decision and Control. Las Vegas, USA, pp. 3155-3160. https://doi.org/10.1109/CDC.2016.7798742
Egorov, A. V., Cuvas, C., Mondié, S., 2017. Necessary and sufficient stability conditions for linear systems with pointwise and distributed delays. Automatica 80, 218-224. https://doi.org/10.1016/j.automatica.2017.02.034
Egorov, A. V., Mondie, S., 2013. A stability criterion for the single delay equation in terms of the Lyapunov matrix. Vestnik Sankt-Peterburgskogo Universiteta. Prikl. Mat., Inf., Prot. Upr. 1, 106-115.
Egorov, A. V., Mondie, S., 2014. Necessary stability conditions for linear delay systems. Automatica 50 (12), 3204-3208. https://doi.org/10.1016/j.automatica.2014.10.031
Egorov, A. V., Mondie, S., 2015. The delay Lyapunov matrix in robust stabilityanalysis of time-delay systems. In: Proceedings of the 12th IFAC WorkshoponTime Delay Systems. pp. 245-250. https://doi.org/10.1016/j.automatica.2014.10.031
Fragoso-Rubio, V., Velasco-Villa, M., Vallejo-Alarcon, J., Vasquez-Santacruz, M., Hernandez-Perez, M., 2019. Consensus problem for linear time-invariant systems with time-delay. Mathematical Problems in Engineering. https://doi.org/10.1155/2019/1607474
Gomez, M. A., Cuvas, C., Mondie, S., Egorov, A. V., 2016a. Scanning the space of parameters for stability regions of neutral type delay systems: A Lya-punov matrix approach. In: 2016 IEEE 55th Conference on Decision and Control (CDC). pp. 3149-3154. https://doi.org/10.1109/CDC.2016.7798741
Gomez, M. A., Egorov, A. V., Mondie, S., 2018. A new stability criterion for neutral-type systems with one delay. In: Proceedings of the 14th IFAC Workshop on Time Delay Systems. pp. 177-182. https://doi.org/10.1016/j.ifacol.2018.07.219
Gomez, M. A., Egorov, A. V., Mondie, S., 2019a. Lyapunov matrix based necessary and sufficient stability condition by finite number of mathematical operations for retarded type systems. Automatica 108, 108475. https://doi.org/10.1016/j.automatica.2019.06.027
Gomez, M. A., Egorov, A. V., Mondie, S., 2019b. Necessary stability conditions for neutral-type systems with multiple commensurate delays. Int. J. of Control 92 (5), 1155-1166. https://doi.org/10.1080/00207179.2017.1384574
Gomez, M. A., Egorov, A. V., Mondie, S., 2020. Necessary and sufficient stability condition by finite number of mathematical operations for time-delay systems of neutral type. IEEE Trans. on Automatic Control 66 (6), 2802-2808. https://doi.org/10.1109/TAC.2020.3008392
Gomez, M. A., Egorov, A. V., Mondie, S., Michiels, W., 2019c. Optimization of the H2 norm for single delay systems, with application to control design and model approximation. IEEE Trans. on Automatic Control 64 (2), 804-811. https://doi.org/10.1109/TAC.2018.2836019
Gomez, M. A., Egorov, A. V., Mondie, S., Zhabko, A. P., 2019d. Computation of the Lyapunov matrix for periodic time-delay systems and its application to robust stability analysis. Systems & Control Letters 132, 104501. https://doi.org/10.1016/j.sysconle.2019.104501
Gomez, M. A., Michiels, W., 2019. Characterization and optimization of the smoothed spectral abscissa for time-delay systems. Int. J. of Robust and Nonlinear Control 29 (13), 4402-4418. https://doi.org/10.1002/rnc.4631
Gomez, M. A., Michiels, W., Mondie, S., 2019e. Design of delay-based output-feedback controllers optimizing a quadratic cost function via the delay Lya-punov matrix. Automatica 107, 146-153. https://doi.org/10.1016/j.automatica.2019.05.045
Gomez, M. A., Ochoa, G., Mondie, S., 2016b. Necessary exponential stability conditions for linear periodic time-delay systems. Int. J. of Robust and Nonlinear Control 26 (18), 3996-4007. https://doi.org/10.1002/rnc.3545
Gonzalez, A., Aragües, R., Lopez-Nicolas, G., Sagues, C., 2020. Predictor-feedback synthesis in coordinate-free formation control under time-varying delays. Automatica 113, 108811. https://doi.org/10.1016/j.automatica.2020.108811
Hernandez-Diez, J.-E., Mendez-Barrios, C.-F., Mondie, S., Niculescu, S.-I., Gonzalez-Galvan, E., 2018. Proportional-delayed controllers design for LTI systems: a geometric approach. Int. J. of Control 91 (4), 907-925. https://doi.org/10.1080/00207179.2017.1299943
Hernandez-Diez, J.-E., Mendez-Barrios, C.-F., Niculescu, S.-I., 2019. Practical guidelines for tuning PD and PI delay-based controllers. In: 15th IFAC Workshop on Time Delay Systems. pp. 61-66. https://doi.org/10.1016/j.ifacol.2019.12.207
Hernandez-Perez, M., Fragoso-Rubio, V., Velasco-Villa, M., del Muro-Cuellar,B., Marquez-Rubio, J., Puebla, H., 2020. Prediction-based control for a class of unstable time-delayed processes by using a modified sequential predictor. J. of Process Control 92, 98-107. https://doi.org/10.1016/j.jprocont.2020.05.014
Jarlebring, E., Vanbiervliet, J., Michiels, W., 2011. Characterizing and computing the H2 norm of time-delay systems by solving the delay Lyapunovequation. IEEE Trans. on Automatic Control 56 (4), 814-825. https://doi.org/10.1109/TAC.2010.2067510
Juarez, L., Alexandrova, I. V., Mondie, S., 2020a. Robust stability analysis for linear systems with distributed delays: A time-domain approach. Int. J. of Robust and Nonlinear Control 30 (18), 8299-8312. https://doi.org/10.1002/rnc.5244
Juarez, L., Mondie, S., Kharitonov, V. L., 2020b. Dynamic predictor for systems with state and input delay: A time-domain robust stability analysis. Int. J. of Robust and Nonlinear Control 30 (6), 2204-2218. https://doi.org/10.1002/rnc.4879
Kharitonov, V. L., 2013. Time-Delay Systems: Lyapunov functionals and matrices. Birkhauser, Basel. https://doi.org/10.1007/978-0-8176-8367-2
Kharitonov, V. L., 2014. An extension of the prediction scheme to the case of systems with both input and state delay. Automatica 50 (1), 211-217. https://doi.org/10.1016/j.automatica.2013.09.042
Kharitonov, V. L., 2015. Predictor-based controls: the implementation problem. Differential Equations 51 (13), 1675-1682. https://doi.org/10.1134/S0012266115130017
Kharitonov, V. L., Zhabko, A. P., 2003. Lyapunov-Krasovskii approach to therobust stability analysis of time-delay systems. Automatica 39 (1), 15-20. https://doi.org/10.1016/S0005-1098(02)00195-4
Krasovskii, N. N., 1963. Stability of motion. Stanford University Press.
Kuhsner, H. J., Barnea, D., 1970. On the control of a linear functional differential equation with quadratic cost. SIAM J. on Control and Optimization8 (2), 257-272. https://doi.org/10.1137/0308019
Letyagina, O. N., Zhabko, A. P., 2009. Robust stability analysis of linear perio-dic systems with time delay. Int. J. of Modern Physics A 24 (5), 893-907. https://doi.org/10.1142/S0217751X09044371
Lopez-Labra, H.-A., Santos-Sanchez, O.-J., Rodriguez-Guerrero, L., Ordaz-Oliver, J.-P., Cuvas-Castillo, C., 2019. Experimental results of optimal and robust control for uncertain linear time-delay systems. J. of Optimization Theory and Applications 181 (3), 1076-1089. https://doi.org/10.1007/s10957-018-01457-9
Manitius, A., Olbrot, A., 1979. Finite spectrum assignment problem for systems with delays. IEEE Trans. on Automatic Control 24 (4), 541-552. https://doi.org/10.1109/TAC.1979.1102124
Marquez-Martinez, L., Moog, C., 2007. New insights on the analysis of nonlinear time-delay systems: Application to the triangular equivalence. Systems & Control Letters 56 (2), 133-140. https://doi.org/10.1016/j.sysconle.2006.08.004
Melchor-Aguilar, D., Kharitonov, V., Lozano, R., 2010. Stability conditions forintegral delay systems. Int. J. of Robust and Nonlinear Control 20 (1), 1-15. https://doi.org/10.1002/rnc.1405
Michiels, W., Gomez, M. A., 2020. On the dual linear periodic time-delay system: Spectrum and lyapunov matrices, with application to analysis and balancing. Int. J. of Robust and Nonlinear Control 30 (10), 3906-3922. https://doi.org/10.1002/rnc.4970
Mondie, S., 2012. Assessing the exact stability region of the single-delay scalar equation via its Lyapunov function. IMA J. of Mathematical Control andInformation 29 (4), 459-470. https://doi.org/10.1093/imamci/dns004
Mondie, S., Cuvas, C., Ramirez, A., Egorov, A., 2012. Necessary conditions for the stability of one delay systems: a Lyapunov matrix approach. In: Proceedings of the 10th IFAC Workshop on Time Delay Systems. Boston, USA, pp. 13-18. https://doi.org/10.3182/20120622-3-US-4021.00022
Mondie, S., Kharitonov, V., 2005. Exponential estimates for retarded time-delay systems: an LMI approach. IEEE Trans. on Automatic Control 50 (2), 268-273. https://doi.org/10.1109/TAC.2004.841916
Mondie,S.,Melchor-Aguilar, D., 2012. Exponential stability of integral delay systems with a class of analytic kernels. IEEE Trans. on Automatic Control 57(2), 484-489. https://doi.org/10.1109/TAC.2011.2178653
Mondie, S., Michiels, W., 2003. Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans. on Automatic Control 48 (12), 2207-2212. https://doi.org/10.1109/TAC.2003.820147
Mondie, S., Ochoa-Ortega, G., Ochoa-Galvan, B., 2011. Instability conditions for linear time delay systems: a Lyapunov matrix function approach. Int. J.of Control 84 (10), 1601-1611. https://doi.org/10.1080/00207179.2011.620632
Najafi, M., Hosseinnia, S., Sheikholeslam, F., Karimadini, M., 2013. Closed-loop control of dead time systems via sequential sub-predictors. Int. J. of Control 86 (4), 599-609. https://doi.org/10.1080/00207179.2012.751627
Neimark, J., 1949. D-subdivisions and spaces of quasi-polynomials. Prikladna-ya Matematika i Mekhanika 13 (5), 349-380.
Nuño, E., Arteaga-Pérez, M., Espinosa-Pérez, G., 2018. Control of bilateral teleoperators with time delays using only position measurements. Int. J. of Robust and Nonlinear Control 28 (3), 808-824. https://doi.org/10.1002/rnc.3903
Nuño, E., Ortega, R., 2018. Achieving consensus of Euler Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control. IEEE Trans. on Control Systems Technology 26 (1), 222-232. https://doi.org/10.1109/TCST.2017.2661822
Ochoa-Ortega, G., Kharitonov, V., Mondie, S., 2013. Critical frequencies and parameters for linear delay systems: A Lyapunov matrix approach. Systems & Control Letters 62 (9), 781-790. https://doi.org/10.1016/j.sysconle.2013.05.010
Ochoa-Ortega, G., Villafuerte-Segura, R., Ramirez-Neria, M., Vite-Hernandez, L., 2019. σ-stabilization of a flexible joint robotic arm via delayed controllers. Complexity, 7289689. https://doi.org/10.1155/2019/7289689
Ordaz, J., Salazar, S., Mondie, S., Romero, H., Lozano, R., 2013. Predictor-based position control of a quad-rotor with delays in GPS and vision measurements. J. of Intelligent and Robotic Systems 70 (4), 13-26. https://doi.org/10.1007/s10846-012-9714-5
Ortega-Martinez, J., Santos-Sanchez, O., Rodriguez-Guerrero, L., Romero-Trejo, H., Ordaz-Oliver, J.-P., 2018. Adaptive nonlinear optimal control for a banana dehydration process. Int. J. of Innovative Computing, Informationand Control 14 (6), 2055-2069.
Ortega-Martinez, J.-M., Santos-Sanchez, O.-J., Mondie, S., 2021. Comments on the Bellman functional for linear time-delay systems. Optimal Control Applications and Methods 42 (5), 1531-1540. https://doi.org/10.1002/oca.2726
Ortiz, R., Del Valle, S., Egorov, A. V., Mondie, S., 2020. Necessary stability conditions for integral delay systems. IEEE Trans. on Automatic Control 65 (10), 4377-4384. https://doi.org/10.1109/TAC.2019.2955962
Ortiz, R., Egorov, A. V., Mondie, S., 2021. Necessary and sufficient stabilityconditions for integral delay systems. Int. J. of Robust and Nonlinear Con-trol 24 (12), 1760-1771. https://doi.org/10.1002/rnc.2962
Ramirez, A., Mondie, S., Garrido, R., Sipahi, R., 2016. Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems. IEEE Trans. on Automatic Control 61 (6), 1688-1693. https://doi.org/10.1109/TAC.2015.2478130
Ramirez, A., Sipahi, R., 2019. Single-delay and multiple-delay Proportional-Retarded (PR) protocols for fast consensus in a large-scale network. IEEE Trans. on Automatic Control 64 (5), 2142-2149. https://doi.org/10.1109/TAC.2018.2866444
Ramirez, A., Sipahi, R., Mendez-Barrios, C.-F., Leyva-Ramos, J., 2021. Derivative-dependent control of a fuel cell system with a safe implementation: An artificial delay approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. https://doi.org/10.1177/09596518211012784
Ramirez, L. F., Saldivar, B., Avila Vilchis, J. C., Montes de Oca, S., 2018. Lyapunov-Krasovskii approach to the stability analysis of the milling process. IET Control Theory & Applications 12 (9), 1332-1339. https://doi.org/10.1049/iet-cta.2017.1252
Ramirez, M., Villafuerte, R., Gonzalez, T., Bernal, M., 2015. Exponential estimates of a class of time-delay non linear systems with convex representations. Int. J. of Applied Mathematics and Computer Science 25 (4), 815-826. https://doi.org/10.1515/amcs-2015-0058
Ramirez Jeronimo, L. F., Zenteno Torres, J., Saldivar, B., Davila, J., Avila Vilchis, J. C., 2020. Robust stabilisation of linear time-invariant time-delay systems via first order and super-twisting sliding mode controllers. IET Control Theory & Applications 14 (1), 175-186. https://doi.org/10.1049/iet-cta.2018.6434
Ramirez-Neria, M., Ochoa-Ortega, G., Luviano-Juarez, A., Lozada-Castillo,N., Trujano-Cabrera, M. A., Campos-Lopez, J. P., 2019. Proportional Retarded control of robot manipulators. IEEE Access 7, 13989-13998. https://doi.org/10.1109/ACCESS.2019.2892414
Rocha, E., Mondie, S., Di Loreto, M., 2018. Necessary stability conditions forlinear difference equations in continuous time. IEEE Transactions on Automatic Control 63 (12), 4405-4412. https://doi.org/10.1109/TAC.2018.2822667
Rodriguez-Guerrero, L., Kharitonov, V. L., Mondie, S., 2016. Robust stability of dynamic predictor based control laws for input and state delay systems. Systems & Control Letters 96, 95-102. https://doi.org/10.1016/j.sysconle.2016.07.006
Ross, D. W., Flugge-Lotz, I., 1969. An optimal control problem for systemswith differential difference equation dynamics. SIAM J. on Control and Optimization 7 (4), 609-623. https://doi.org/10.1137/0307044
Santos, O., Mondie, S., Kharitonov, V. L., 2009. Linear quadratic suboptimal control for time-delays systems. Int. J. of Control 82 (1), 147-154. https://doi.org/10.1080/00207170802027401
Santos-Sanchez, N.-F., Raul, S.-C., Santos-Sanchez, O.-J., Romero-Trejo, H.,Garrido-Aranda, E., 2016. On the effects of the temperature control at the performance of a dehydration process: energy optimization and nutrients retention. The Int. J. of Advanced Manufacturing Technology 9 (12), 3157-3171. https://doi.org/10.1007/s00170-016-8481-z
Santos-Sanchez, O.-J., Mondie, S., Rodriguez-Guerrero, L., Carmona-Rosas, J.-C., 2019. Delays compensation for an atmospheric sliced tomatoes dehydration process via state predictors. J. of the Franklin Institute 356 (18), 11473-11491. https://doi.org/10.1016/j.jfranklin.2019.09.036
Santos-Sanchez, O.-J., Velasco-Rebollo, R.-E., Rodriguez-Guerrero, L., Ordaz-Oliver, J.-P., Cuvas-Castillo, C., 2021. Lyapunov redesign for input and state delays systems by using optimal predictive control and ultimate bound approaches: theory and experiments. IEEE Trans. on Industrial Electronics 68 (12), 12575-12583. https://doi.org/10.1109/TIE.2020.3040678
Sumacheva, V. A., Kharitonov, V. L., 2014. Computation of the H2 norm of the transfer matrix of a neutral type system. Differential equations 50 (13), 1752-1759. https://doi.org/10.1134/S0012266114130060
Velasco-Villa, M., Cruz-Morales, R., Rodriguez-Angeles, A., Dominguez-Ortega, C., 2021. Observer-based time-variant spacing policy for a platoon of non-holonomic mobile robots. Sensors 21 (11). https://doi.org/10.3390/s21113824
Villafuerte, R., Mondie, S., Poznyak, A., 2011. Practical stability of time-delaysystems: LMI's approach. European Journal of Control 17 (2), 127-138. https://doi.org/10.3166/ejc.17.127-138
Villafuerte, R., Saldivar, B., Mondie, S., 2013. Practical stability and stabilization of a class of nonlinear neutral type time delay systems with multipledelays: a BMI approach. Int. J. of Control, Automation and Systems 11 (5), 859-867. https://doi.org/10.1007/s12555-013-0083-z
Vite, L., Gomez, M. A., Mondie, S., Michiels, W., 2021a. Stabilization of distributed time-delay systems: a smoothed spectral abscissa optimization approach. Int. J. of Control, 1-29. https://doi.org/10.1080/00207179.2021.1943759
Vite, L., Gomez, M. A., Morales, J., Mondie, S., 2020. A new control schemefor time-delay compensation for structural vibration. In: 21st IFAC World Congress. pp. 4804-4809. https://doi.org/10.1016/j.ifacol.2020.12.1025
Vite, L., Júarez, L., Gomez, M. A., Mondi ́e, S., 2021b. Dynamic predictor-based adaptive cruise control. J. of The Franklin Institute, submitted
[-]