- -

Contribuciones al estudio de sistemas lineales con retardos: el enfoque de funcionales de tipo completo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Contribuciones al estudio de sistemas lineales con retardos: el enfoque de funcionales de tipo completo

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mondié, Sabine es_ES
dc.contributor.author Gomez, Marco-Antonio es_ES
dc.date.accessioned 2022-10-05T08:16:36Z
dc.date.available 2022-10-05T08:16:36Z
dc.date.issued 2022-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/187026
dc.description.abstract [EN] Recent results on Lyapunov-Krasovskii functionals of complete type for linear time-delay systems are presented. The main concepts and results are introduced for the single delay system case, and necessary and sufficient stability conditions expressed in terms of the Lyapunov delay matrix are explained. The use of complete type functionals in analysis and controller design is discussed. The contribution focuses mainly at results of researchers in Mexico. es_ES
dc.description.abstract [ES] Se introducen resultados recientes del enfoque de funcionales de Lyapunov-Krasovski de tipo completo para sistemas lineales con retardos. Se explican brevemente los principales conceptos y resultados para el caso de sistemas con un retardo así como las condiciones necesarias y suficientes de estabilidad expresadas en terminos del análogo de la matriz de Lyapunov. Las extensiones  de este tipo de condiciones de estabilidad a otras clases de sistemas con retardos son expuestas brevemente. Tambien se presentan aplicaciones existentes del efoque de funcionales de tipo completo a problemas de analisis y de diseño de controladores. El trabajo se enfoca a contribuciones de investigadores de Mexico a este tema de estudio. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo del Conacyt, México, Proyecto A1-S-24796. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Time-delay systems es_ES
dc.subject Stability analysis es_ES
dc.subject Linear systems es_ES
dc.subject Controller design es_ES
dc.subject Sistemas con retardos es_ES
dc.subject Análisis de estabilidad es_ES
dc.subject Sistemas lineales es_ES
dc.subject Diseño de controladores es_ES
dc.title Contribuciones al estudio de sistemas lineales con retardos: el enfoque de funcionales de tipo completo es_ES
dc.title.alternative Linear time-delay systems: the complete type functionals approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16828
dc.relation.projectID info:eu-repo/grantAgreement/Conacyt//A1-S-24796 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mondié, S.; Gomez, M. (2022). Contribuciones al estudio de sistemas lineales con retardos: el enfoque de funcionales de tipo completo. Revista Iberoamericana de Automática e Informática industrial. 19(4):381-393. https://doi.org/10.4995/riai.2022.16828 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16828 es_ES
dc.description.upvformatpinicio 381 es_ES
dc.description.upvformatpfin 393 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16828 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Alexandrova, I. V., Zhabko, A. P., 2018. A new LKF approach to stability analysis of linear systems with uncertain delays. Automatica 91, 173-178. https://doi.org/10.1016/j.automatica.2018.01.012 es_ES
dc.description.references Arismendi-Valle, H., Melchor-Aguilar, D., 2019. On the Lyapunov matrices for integral delay systems. Int. J. of Systems Science 50 (6), 1190-1201. https://doi.org/10.1080/00207721.2019.1597943 es_ES
dc.description.references Bejarano, F. J., 2021. Zero dynamics normal form and disturbance decoupling of commensurate and distributed time-delay systems. Automatica129, 109634. https://doi.org/10.1016/j.automatica.2021.109634 es_ES
dc.description.references Bejarano, F. J., Zheng, G., 2017. Unknown input functional observability of descriptor systems with neutral and distributed delay effects. Automatica 85, 186-192. https://doi.org/10.1016/j.automatica.2017.07.044 es_ES
dc.description.references Califano, C., Marquez-Martínez, L. A., Moog, C. H., 2013. Linearization of time-delay systems by input output injection and output transformation. Automatica 49 (6), 1932-1940. https://doi.org/10.1016/j.automatica.2013.03.001 es_ES
dc.description.references Castaños, F., Estrada, E., Mondié, S., Ramírez, A., 2018. Passivity-based PI control of first-order systems with I/O communication delays: a frequency domain analysis. Int. J. of Control 91 (11), 2549-2562. https://doi.org/10.1080/00207179.2017.1327083 es_ES
dc.description.references Castaños, F., Mondié, S., 2021. Observer-based predictor for a susceptible-infectious-recovered model with delays: an optimal-control case study. Int. J. of Robust and Nonlinear Control 31 (11), 5118-5133. https://doi.org/10.1002/rnc.5522 es_ES
dc.description.references Cuvas, C., Mondie, S., 2016. Necessary stability conditions for delay systems with multiple pointwise and distributed delays. IEEE Trans. on Automatic Control 61 (7), 1987-1994. https://doi.org/10.1109/TAC.2015.2487478 es_ES
dc.description.references Cuvas, C., Ramírez, A., Juárez, L., Mondié, S., 2019. Scanning the space of parameters for stability regions of a class of time-delay systems; a Lyapunovmatrix approach. Delays and Interconnections: Methodology, Algorithmsand Applications. https://doi.org/10.1007/978-3-030-11554-8_10 es_ES
dc.description.references Cuvas, C., Santos-Sánchez, O.-J., Ordaz, P., Rodríguez-Guerrero, L., 2021. Suboptimal control for systems with commensurate and distributed delays of neutral type. Int. J. of Robust and Nonlinear Control n/a (n/a). https://doi.org/10.1002/rnc.5739 es_ES
dc.description.references Egorov, A. V., 2014. A new necessary and sufficient stability condition for linear time-delay systems. In: Proceedings of the 19th IFAC World Congress. Cape Town, South Africa, pp. 11018-11023. https://doi.org/10.3182/20140824-6-ZA-1003.02677 es_ES
dc.description.references Egorov, A. V., 2016. A finite necessary and sufficient stability condition for linear retarded type systems. In: Proceedings of the 55th IEEE Conference on Decision and Control. Las Vegas, USA, pp. 3155-3160. https://doi.org/10.1109/CDC.2016.7798742 es_ES
dc.description.references Egorov, A. V., Cuvas, C., Mondié, S., 2017. Necessary and sufficient stability conditions for linear systems with pointwise and distributed delays. Automatica 80, 218-224. https://doi.org/10.1016/j.automatica.2017.02.034 es_ES
dc.description.references Egorov, A. V., Mondie, S., 2013. A stability criterion for the single delay equation in terms of the Lyapunov matrix. Vestnik Sankt-Peterburgskogo Universiteta. Prikl. Mat., Inf., Prot. Upr. 1, 106-115. es_ES
dc.description.references Egorov, A. V., Mondie, S., 2014. Necessary stability conditions for linear delay systems. Automatica 50 (12), 3204-3208. https://doi.org/10.1016/j.automatica.2014.10.031 es_ES
dc.description.references Egorov, A. V., Mondie, S., 2015. The delay Lyapunov matrix in robust stabilityanalysis of time-delay systems. In: Proceedings of the 12th IFAC WorkshoponTime Delay Systems. pp. 245-250. https://doi.org/10.1016/j.automatica.2014.10.031 es_ES
dc.description.references Fragoso-Rubio, V., Velasco-Villa, M., Vallejo-Alarcon, J., Vasquez-Santacruz, M., Hernandez-Perez, M., 2019. Consensus problem for linear time-invariant systems with time-delay. Mathematical Problems in Engineering. https://doi.org/10.1155/2019/1607474 es_ES
dc.description.references Gomez, M. A., Cuvas, C., Mondie, S., Egorov, A. V., 2016a. Scanning the space of parameters for stability regions of neutral type delay systems: A Lya-punov matrix approach. In: 2016 IEEE 55th Conference on Decision and Control (CDC). pp. 3149-3154. https://doi.org/10.1109/CDC.2016.7798741 es_ES
dc.description.references Gomez, M. A., Egorov, A. V., Mondie, S., 2018. A new stability criterion for neutral-type systems with one delay. In: Proceedings of the 14th IFAC Workshop on Time Delay Systems. pp. 177-182. https://doi.org/10.1016/j.ifacol.2018.07.219 es_ES
dc.description.references Gomez, M. A., Egorov, A. V., Mondie, S., 2019a. Lyapunov matrix based necessary and sufficient stability condition by finite number of mathematical operations for retarded type systems. Automatica 108, 108475. https://doi.org/10.1016/j.automatica.2019.06.027 es_ES
dc.description.references Gomez, M. A., Egorov, A. V., Mondie, S., 2019b. Necessary stability conditions for neutral-type systems with multiple commensurate delays. Int. J. of Control 92 (5), 1155-1166. https://doi.org/10.1080/00207179.2017.1384574 es_ES
dc.description.references Gomez, M. A., Egorov, A. V., Mondie, S., 2020. Necessary and sufficient stability condition by finite number of mathematical operations for time-delay systems of neutral type. IEEE Trans. on Automatic Control 66 (6), 2802-2808. https://doi.org/10.1109/TAC.2020.3008392 es_ES
dc.description.references Gomez, M. A., Egorov, A. V., Mondie, S., Michiels, W., 2019c. Optimization of the H2 norm for single delay systems, with application to control design and model approximation. IEEE Trans. on Automatic Control 64 (2), 804-811. https://doi.org/10.1109/TAC.2018.2836019 es_ES
dc.description.references Gomez, M. A., Egorov, A. V., Mondie, S., Zhabko, A. P., 2019d. Computation of the Lyapunov matrix for periodic time-delay systems and its application to robust stability analysis. Systems & Control Letters 132, 104501. https://doi.org/10.1016/j.sysconle.2019.104501 es_ES
dc.description.references Gomez, M. A., Michiels, W., 2019. Characterization and optimization of the smoothed spectral abscissa for time-delay systems. Int. J. of Robust and Nonlinear Control 29 (13), 4402-4418. https://doi.org/10.1002/rnc.4631 es_ES
dc.description.references Gomez, M. A., Michiels, W., Mondie, S., 2019e. Design of delay-based output-feedback controllers optimizing a quadratic cost function via the delay Lya-punov matrix. Automatica 107, 146-153. https://doi.org/10.1016/j.automatica.2019.05.045 es_ES
dc.description.references Gomez, M. A., Ochoa, G., Mondie, S., 2016b. Necessary exponential stability conditions for linear periodic time-delay systems. Int. J. of Robust and Nonlinear Control 26 (18), 3996-4007. https://doi.org/10.1002/rnc.3545 es_ES
dc.description.references Gonzalez, A., Aragües, R., Lopez-Nicolas, G., Sagues, C., 2020. Predictor-feedback synthesis in coordinate-free formation control under time-varying delays. Automatica 113, 108811. https://doi.org/10.1016/j.automatica.2020.108811 es_ES
dc.description.references Hernandez-Diez, J.-E., Mendez-Barrios, C.-F., Mondie, S., Niculescu, S.-I., Gonzalez-Galvan, E., 2018. Proportional-delayed controllers design for LTI systems: a geometric approach. Int. J. of Control 91 (4), 907-925. https://doi.org/10.1080/00207179.2017.1299943 es_ES
dc.description.references Hernandez-Diez, J.-E., Mendez-Barrios, C.-F., Niculescu, S.-I., 2019. Practical guidelines for tuning PD and PI delay-based controllers. In: 15th IFAC Workshop on Time Delay Systems. pp. 61-66. https://doi.org/10.1016/j.ifacol.2019.12.207 es_ES
dc.description.references Hernandez-Perez, M., Fragoso-Rubio, V., Velasco-Villa, M., del Muro-Cuellar,B., Marquez-Rubio, J., Puebla, H., 2020. Prediction-based control for a class of unstable time-delayed processes by using a modified sequential predictor. J. of Process Control 92, 98-107. https://doi.org/10.1016/j.jprocont.2020.05.014 es_ES
dc.description.references Jarlebring, E., Vanbiervliet, J., Michiels, W., 2011. Characterizing and computing the H2 norm of time-delay systems by solving the delay Lyapunovequation. IEEE Trans. on Automatic Control 56 (4), 814-825. https://doi.org/10.1109/TAC.2010.2067510 es_ES
dc.description.references Juarez, L., Alexandrova, I. V., Mondie, S., 2020a. Robust stability analysis for linear systems with distributed delays: A time-domain approach. Int. J. of Robust and Nonlinear Control 30 (18), 8299-8312. https://doi.org/10.1002/rnc.5244 es_ES
dc.description.references Juarez, L., Mondie, S., Kharitonov, V. L., 2020b. Dynamic predictor for systems with state and input delay: A time-domain robust stability analysis. Int. J. of Robust and Nonlinear Control 30 (6), 2204-2218. https://doi.org/10.1002/rnc.4879 es_ES
dc.description.references Kharitonov, V. L., 2013. Time-Delay Systems: Lyapunov functionals and matrices. Birkhauser, Basel. https://doi.org/10.1007/978-0-8176-8367-2 es_ES
dc.description.references Kharitonov, V. L., 2014. An extension of the prediction scheme to the case of systems with both input and state delay. Automatica 50 (1), 211-217. https://doi.org/10.1016/j.automatica.2013.09.042 es_ES
dc.description.references Kharitonov, V. L., 2015. Predictor-based controls: the implementation problem. Differential Equations 51 (13), 1675-1682. https://doi.org/10.1134/S0012266115130017 es_ES
dc.description.references Kharitonov, V. L., Zhabko, A. P., 2003. Lyapunov-Krasovskii approach to therobust stability analysis of time-delay systems. Automatica 39 (1), 15-20. https://doi.org/10.1016/S0005-1098(02)00195-4 es_ES
dc.description.references Krasovskii, N. N., 1963. Stability of motion. Stanford University Press. es_ES
dc.description.references Kuhsner, H. J., Barnea, D., 1970. On the control of a linear functional differential equation with quadratic cost. SIAM J. on Control and Optimization8 (2), 257-272. https://doi.org/10.1137/0308019 es_ES
dc.description.references Letyagina, O. N., Zhabko, A. P., 2009. Robust stability analysis of linear perio-dic systems with time delay. Int. J. of Modern Physics A 24 (5), 893-907. https://doi.org/10.1142/S0217751X09044371 es_ES
dc.description.references Lopez-Labra, H.-A., Santos-Sanchez, O.-J., Rodriguez-Guerrero, L., Ordaz-Oliver, J.-P., Cuvas-Castillo, C., 2019. Experimental results of optimal and robust control for uncertain linear time-delay systems. J. of Optimization Theory and Applications 181 (3), 1076-1089. https://doi.org/10.1007/s10957-018-01457-9 es_ES
dc.description.references Manitius, A., Olbrot, A., 1979. Finite spectrum assignment problem for systems with delays. IEEE Trans. on Automatic Control 24 (4), 541-552. https://doi.org/10.1109/TAC.1979.1102124 es_ES
dc.description.references Marquez-Martinez, L., Moog, C., 2007. New insights on the analysis of nonlinear time-delay systems: Application to the triangular equivalence. Systems & Control Letters 56 (2), 133-140. https://doi.org/10.1016/j.sysconle.2006.08.004 es_ES
dc.description.references Melchor-Aguilar, D., Kharitonov, V., Lozano, R., 2010. Stability conditions forintegral delay systems. Int. J. of Robust and Nonlinear Control 20 (1), 1-15. https://doi.org/10.1002/rnc.1405 es_ES
dc.description.references Michiels, W., Gomez, M. A., 2020. On the dual linear periodic time-delay system: Spectrum and lyapunov matrices, with application to analysis and balancing. Int. J. of Robust and Nonlinear Control 30 (10), 3906-3922. https://doi.org/10.1002/rnc.4970 es_ES
dc.description.references Mondie, S., 2012. Assessing the exact stability region of the single-delay scalar equation via its Lyapunov function. IMA J. of Mathematical Control andInformation 29 (4), 459-470. https://doi.org/10.1093/imamci/dns004 es_ES
dc.description.references Mondie, S., Cuvas, C., Ramirez, A., Egorov, A., 2012. Necessary conditions for the stability of one delay systems: a Lyapunov matrix approach. In: Proceedings of the 10th IFAC Workshop on Time Delay Systems. Boston, USA, pp. 13-18. https://doi.org/10.3182/20120622-3-US-4021.00022 es_ES
dc.description.references Mondie, S., Kharitonov, V., 2005. Exponential estimates for retarded time-delay systems: an LMI approach. IEEE Trans. on Automatic Control 50 (2), 268-273. https://doi.org/10.1109/TAC.2004.841916 es_ES
dc.description.references Mondie,S.,Melchor-Aguilar, D., 2012. Exponential stability of integral delay systems with a class of analytic kernels. IEEE Trans. on Automatic Control 57(2), 484-489. https://doi.org/10.1109/TAC.2011.2178653 es_ES
dc.description.references Mondie, S., Michiels, W., 2003. Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans. on Automatic Control 48 (12), 2207-2212. https://doi.org/10.1109/TAC.2003.820147 es_ES
dc.description.references Mondie, S., Ochoa-Ortega, G., Ochoa-Galvan, B., 2011. Instability conditions for linear time delay systems: a Lyapunov matrix function approach. Int. J.of Control 84 (10), 1601-1611. https://doi.org/10.1080/00207179.2011.620632 es_ES
dc.description.references Najafi, M., Hosseinnia, S., Sheikholeslam, F., Karimadini, M., 2013. Closed-loop control of dead time systems via sequential sub-predictors. Int. J. of Control 86 (4), 599-609. https://doi.org/10.1080/00207179.2012.751627 es_ES
dc.description.references Neimark, J., 1949. D-subdivisions and spaces of quasi-polynomials. Prikladna-ya Matematika i Mekhanika 13 (5), 349-380. es_ES
dc.description.references Nuño, E., Arteaga-Pérez, M., Espinosa-Pérez, G., 2018. Control of bilateral teleoperators with time delays using only position measurements. Int. J. of Robust and Nonlinear Control 28 (3), 808-824. https://doi.org/10.1002/rnc.3903 es_ES
dc.description.references Nuño, E., Ortega, R., 2018. Achieving consensus of Euler Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control. IEEE Trans. on Control Systems Technology 26 (1), 222-232. https://doi.org/10.1109/TCST.2017.2661822 es_ES
dc.description.references Ochoa-Ortega, G., Kharitonov, V., Mondie, S., 2013. Critical frequencies and parameters for linear delay systems: A Lyapunov matrix approach. Systems & Control Letters 62 (9), 781-790. https://doi.org/10.1016/j.sysconle.2013.05.010 es_ES
dc.description.references Ochoa-Ortega, G., Villafuerte-Segura, R., Ramirez-Neria, M., Vite-Hernandez, L., 2019. σ-stabilization of a flexible joint robotic arm via delayed controllers. Complexity, 7289689. https://doi.org/10.1155/2019/7289689 es_ES
dc.description.references Ordaz, J., Salazar, S., Mondie, S., Romero, H., Lozano, R., 2013. Predictor-based position control of a quad-rotor with delays in GPS and vision measurements. J. of Intelligent and Robotic Systems 70 (4), 13-26. https://doi.org/10.1007/s10846-012-9714-5 es_ES
dc.description.references Ortega-Martinez, J., Santos-Sanchez, O., Rodriguez-Guerrero, L., Romero-Trejo, H., Ordaz-Oliver, J.-P., 2018. Adaptive nonlinear optimal control for a banana dehydration process. Int. J. of Innovative Computing, Informationand Control 14 (6), 2055-2069. es_ES
dc.description.references Ortega-Martinez, J.-M., Santos-Sanchez, O.-J., Mondie, S., 2021. Comments on the Bellman functional for linear time-delay systems. Optimal Control Applications and Methods 42 (5), 1531-1540. https://doi.org/10.1002/oca.2726 es_ES
dc.description.references Ortiz, R., Del Valle, S., Egorov, A. V., Mondie, S., 2020. Necessary stability conditions for integral delay systems. IEEE Trans. on Automatic Control 65 (10), 4377-4384. https://doi.org/10.1109/TAC.2019.2955962 es_ES
dc.description.references Ortiz, R., Egorov, A. V., Mondie, S., 2021. Necessary and sufficient stabilityconditions for integral delay systems. Int. J. of Robust and Nonlinear Con-trol 24 (12), 1760-1771. https://doi.org/10.1002/rnc.2962 es_ES
dc.description.references Ramirez, A., Mondie, S., Garrido, R., Sipahi, R., 2016. Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems. IEEE Trans. on Automatic Control 61 (6), 1688-1693. https://doi.org/10.1109/TAC.2015.2478130 es_ES
dc.description.references Ramirez, A., Sipahi, R., 2019. Single-delay and multiple-delay Proportional-Retarded (PR) protocols for fast consensus in a large-scale network. IEEE Trans. on Automatic Control 64 (5), 2142-2149. https://doi.org/10.1109/TAC.2018.2866444 es_ES
dc.description.references Ramirez, A., Sipahi, R., Mendez-Barrios, C.-F., Leyva-Ramos, J., 2021. Derivative-dependent control of a fuel cell system with a safe implementation: An artificial delay approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. https://doi.org/10.1177/09596518211012784 es_ES
dc.description.references Ramirez, L. F., Saldivar, B., Avila Vilchis, J. C., Montes de Oca, S., 2018. Lyapunov-Krasovskii approach to the stability analysis of the milling process. IET Control Theory & Applications 12 (9), 1332-1339. https://doi.org/10.1049/iet-cta.2017.1252 es_ES
dc.description.references Ramirez, M., Villafuerte, R., Gonzalez, T., Bernal, M., 2015. Exponential estimates of a class of time-delay non linear systems with convex representations. Int. J. of Applied Mathematics and Computer Science 25 (4), 815-826. https://doi.org/10.1515/amcs-2015-0058 es_ES
dc.description.references Ramirez Jeronimo, L. F., Zenteno Torres, J., Saldivar, B., Davila, J., Avila Vilchis, J. C., 2020. Robust stabilisation of linear time-invariant time-delay systems via first order and super-twisting sliding mode controllers. IET Control Theory & Applications 14 (1), 175-186. https://doi.org/10.1049/iet-cta.2018.6434 es_ES
dc.description.references Ramirez-Neria, M., Ochoa-Ortega, G., Luviano-Juarez, A., Lozada-Castillo,N., Trujano-Cabrera, M. A., Campos-Lopez, J. P., 2019. Proportional Retarded control of robot manipulators. IEEE Access 7, 13989-13998. https://doi.org/10.1109/ACCESS.2019.2892414 es_ES
dc.description.references Rocha, E., Mondie, S., Di Loreto, M., 2018. Necessary stability conditions forlinear difference equations in continuous time. IEEE Transactions on Automatic Control 63 (12), 4405-4412. https://doi.org/10.1109/TAC.2018.2822667 es_ES
dc.description.references Rodriguez-Guerrero, L., Kharitonov, V. L., Mondie, S., 2016. Robust stability of dynamic predictor based control laws for input and state delay systems. Systems & Control Letters 96, 95-102. https://doi.org/10.1016/j.sysconle.2016.07.006 es_ES
dc.description.references Ross, D. W., Flugge-Lotz, I., 1969. An optimal control problem for systemswith differential difference equation dynamics. SIAM J. on Control and Optimization 7 (4), 609-623. https://doi.org/10.1137/0307044 es_ES
dc.description.references Santos, O., Mondie, S., Kharitonov, V. L., 2009. Linear quadratic suboptimal control for time-delays systems. Int. J. of Control 82 (1), 147-154. https://doi.org/10.1080/00207170802027401 es_ES
dc.description.references Santos-Sanchez, N.-F., Raul, S.-C., Santos-Sanchez, O.-J., Romero-Trejo, H.,Garrido-Aranda, E., 2016. On the effects of the temperature control at the performance of a dehydration process: energy optimization and nutrients retention. The Int. J. of Advanced Manufacturing Technology 9 (12), 3157-3171. https://doi.org/10.1007/s00170-016-8481-z es_ES
dc.description.references Santos-Sanchez, O.-J., Mondie, S., Rodriguez-Guerrero, L., Carmona-Rosas, J.-C., 2019. Delays compensation for an atmospheric sliced tomatoes dehydration process via state predictors. J. of the Franklin Institute 356 (18), 11473-11491. https://doi.org/10.1016/j.jfranklin.2019.09.036 es_ES
dc.description.references Santos-Sanchez, O.-J., Velasco-Rebollo, R.-E., Rodriguez-Guerrero, L., Ordaz-Oliver, J.-P., Cuvas-Castillo, C., 2021. Lyapunov redesign for input and state delays systems by using optimal predictive control and ultimate bound approaches: theory and experiments. IEEE Trans. on Industrial Electronics 68 (12), 12575-12583. https://doi.org/10.1109/TIE.2020.3040678 es_ES
dc.description.references Sumacheva, V. A., Kharitonov, V. L., 2014. Computation of the H2 norm of the transfer matrix of a neutral type system. Differential equations 50 (13), 1752-1759. https://doi.org/10.1134/S0012266114130060 es_ES
dc.description.references Velasco-Villa, M., Cruz-Morales, R., Rodriguez-Angeles, A., Dominguez-Ortega, C., 2021. Observer-based time-variant spacing policy for a platoon of non-holonomic mobile robots. Sensors 21 (11). https://doi.org/10.3390/s21113824 es_ES
dc.description.references Villafuerte, R., Mondie, S., Poznyak, A., 2011. Practical stability of time-delaysystems: LMI's approach. European Journal of Control 17 (2), 127-138. https://doi.org/10.3166/ejc.17.127-138 es_ES
dc.description.references Villafuerte, R., Saldivar, B., Mondie, S., 2013. Practical stability and stabilization of a class of nonlinear neutral type time delay systems with multipledelays: a BMI approach. Int. J. of Control, Automation and Systems 11 (5), 859-867. https://doi.org/10.1007/s12555-013-0083-z es_ES
dc.description.references Vite, L., Gomez, M. A., Mondie, S., Michiels, W., 2021a. Stabilization of distributed time-delay systems: a smoothed spectral abscissa optimization approach. Int. J. of Control, 1-29. https://doi.org/10.1080/00207179.2021.1943759 es_ES
dc.description.references Vite, L., Gomez, M. A., Morales, J., Mondie, S., 2020. A new control schemefor time-delay compensation for structural vibration. In: 21st IFAC World Congress. pp. 4804-4809. https://doi.org/10.1016/j.ifacol.2020.12.1025 es_ES
dc.description.references Vite, L., Júarez, L., Gomez, M. A., Mondi ́e, S., 2021b. Dynamic predictor-based adaptive cruise control. J. of The Franklin Institute, submitted es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem