- -

Reguladores basados en observadores de perturbaciones: principios de funcionamiento y métodos de diseño

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reguladores basados en observadores de perturbaciones: principios de funcionamiento y métodos de diseño

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castillo, Alberto es_ES
dc.contributor.author García Gil, Pedro José es_ES
dc.contributor.author Albertos, Pedro es_ES
dc.date.accessioned 2022-10-05T09:41:33Z
dc.date.available 2022-10-05T09:41:33Z
dc.date.issued 2022-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/187040
dc.description.abstract [EN] During the past decades, the scientific interest on the linear disturbance observer-based controllers has notably increased, mainly, due to their good properties for handling changes or uncertainties in the systems. In this tutorial, these type of controllers are reviewed by analyzing their characteristic elements which are: i) the disturbed models, ii) the disturbance observer algorithms, and iii) the feedback control-laws as well as their main design-techniques. Some aspects of the control theory that motivate and support the use of these regulators are also described, including: the model uncertainties, its relevance within the robust control paradigm, and the capability of the disturbed models to handle uncertainties. The tutorial concludes with an ilustrative example on the closed-loop glucose control for diabetic people (artificial pancreas). es_ES
dc.description.abstract [ES] Durante las últimas décadas, los reguladores lineales basados en observadores de perturbaciones han experimentado un interés creciente entre la comunidad científica, principalmente, debido a sus buenas propiedades para tolerar cambios o incertidumbres en los sistemas. En este tutorial se aborda una revisión de dichos reguladores, analizando sus elementos más característicos esdecir: i) los modelos con entradas de perturbación, ii) los algoritmos observadores de perturbaciones, y iii) el diseño de leyes decontrol , así como sus principales técnicas de diseño. Se consideran también algunos aspectos de la teoría del control que motivan y justifican la utilización de estos reguladores; principalmente: la incertidumbre de los modelos, su importancia dentro del paradigma del control robusto y la capacidad de los modelos perturbados para representar sistemas inciertos. El tutorial concluye con u nejemplo ilustrativo sobre el diseño de este tipo de reguladores para el control de glucosa en personas diabéticas (páncreas artificial). es_ES
dc.description.sponsorship Este trabajo ha sido financiado por la Union Europea-Next Generation EU –proyecto Margarita Salas, MS/38, Universitat Politècnica de València, Ministerio de Universidades, España. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Disturbance Observer-Based Controllers es_ES
dc.subject Robust Control es_ES
dc.subject Uncertain Systems es_ES
dc.subject MIMO Systems es_ES
dc.subject Optimal Control es_ES
dc.subject LQR es_ES
dc.subject Observadores de perturbaciones es_ES
dc.subject Control Robusto es_ES
dc.subject Sistemas Inciertos es_ES
dc.subject Sistemas MIMO es_ES
dc.subject Control Óptimo es_ES
dc.title Reguladores basados en observadores de perturbaciones: principios de funcionamiento y métodos de diseño es_ES
dc.title.alternative Disturbance Observer-Based Controllers: operating principles and design strategies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16856
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Castillo, A.; García Gil, PJ.; Albertos, P. (2022). Reguladores basados en observadores de perturbaciones: principios de funcionamiento y métodos de diseño. Revista Iberoamericana de Automática e Informática industrial. 19(4):343-355. https://doi.org/10.4995/riai.2022.16856 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16856 es_ES
dc.description.upvformatpinicio 343 es_ES
dc.description.upvformatpfin 355 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16856 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Athans, M., 1971. On the LQG problem. IEEE Transactions on Automatic Control 16 (6), 528-528. https://doi.org/10.1109/TAC.1971.1099845 es_ES
dc.description.references Basar, T., Olsder, G. J., 1998. Dynamic noncooperative game theory. SIAM. https://doi.org/10.1137/1.9781611971132 es_ES
dc.description.references Bernardi, E., Adam, E. J., 2020. Observer-based fault detection and diagnosis strategy for industrial processes. Journal of the Franklin Institute 357 (14), 10054-10081. https://doi.org/10.1016/j.jfranklin.2020.07.046 es_ES
dc.description.references Bernhard, P., 2003. A robust control approach to option pricing. Applications of Robust Decision Theory and Ambiguity in Finance. City University Press, London. es_ES
dc.description.references Bhattacharyya, S., 1978. Observer design for linear systems with unknown inputs. IEEE transactions on Automatic Control 23 (3), 483-484. https://doi.org/10.1109/TAC.1978.1101758 es_ES
dc.description.references Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. SIAM. https://doi.org/10.1137/1.9781611970777 es_ES
dc.description.references Bünte, T., Odenthal, D., Aksun-G¨uvenc¸, B., G¨uvenc¸, L., 2002. Robust vehicle steering control design based on the disturbance observer. Annual reviews in control 26 (1), 139-149. https://doi.org/10.1016/S1367-5788(02)80024-4 es_ES
dc.description.references Carvajal, B. V. M., Saez, J. S., Rodríguez, S. G.-N., Iranzo, M. M., 2021. Control por rechazo activo de perturbaciones: guía de dise˜no y aplicación. Revista Iberoamericana de Automática e Informática industrial 18 (3), 201-217. https://doi.org/10.4995/riai.2020.14058 es_ES
dc.description.references Castillo, A., 2021. Novel strategies to design controllers and state predictors based on disturbance observers. Ph.D. thesis, Universitat Politècnica de València. es_ES
dc.description.references Castillo, A., García, P., 2021. Predicting the future state of disturbed lti systems: A solution based on high-order observers. Automatica 124, 109365. https://doi.org/10.1016/j.automatica.2020.109365 es_ES
dc.description.references Castillo, A., García, P., Fridman, E., Albertos, P., 2019a. Extended state observer-based control for systems with locally lipschitz uncertainties: Lmibased stability conditions. Systems & Control Letters 134. https://doi.org/10.1016/j.sysconle.2019.104526 es_ES
dc.description.references Castillo, A., García, P., Sanz, R., Albertos, P., 2018. Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances. ISA transactions 73, 1-10. https://doi.org/10.1016/j.isatra.2017.12.005 es_ES
dc.description.references Castillo, A., Santos, T. L., Garcia, P., Normey-Rico, J. E., 2020. Predictive esobased control with guaranteed stability for complex uncertain constrained systems. ISA transactions. https://doi.org/10.1016/j.isatra.2020.12.014 es_ES
dc.description.references Castillo, A., Sanz, R., Garcia, P., Qiu, W., Wang, H., Xu, C., 2019b. Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers. Control Engineering Practice 82, 14-23. https://doi.org/10.1016/j.conengprac.2018.09.016 es_ES
dc.description.references Chakrabarty, A., Corless, M. J., Buzzard, G. T., ˙ Zak, S. H., Rundell, A. E., 2017. State and unknown input observers for nonlinear systems with bounded exogenous inputs. IEEE Transactions on Automatic Control 62 (11), 5497-5510. https://doi.org/10.1109/TAC.2017.2681520 es_ES
dc.description.references Chang, J.-L., 2006. Applying discrete-time proportional integral observers for state and disturbance estimations. IEEE Transactions on Automatic Control 51 (5), 814-818. https://doi.org/10.1109/TAC.2006.875019 es_ES
dc.description.references Chapellat, H., Bhattacharyya, S., 1989. A generalization of kharitonov's theorem; robust stability of interval plants. IEEE transactions on automatic control 34 (3), 306-311. https://doi.org/10.1109/9.16420 es_ES
dc.description.references Chen, W. H., Yang, J., Guo, L., Li, S., 2016. Disturbance-observer-based control and related methods-An overview. IEEE Transactions on Industrial Electronics 63 (2), 1083-1095. https://doi.org/10.1109/TIE.2015.2478397 es_ES
dc.description.references Chilali, M., Gahinet, P., Apkarian, P., 1999. Robust pole placement in LMI regions. IEEE transactions on Automatic Control 44 (12), 2257-2270. https://doi.org/10.1109/9.811208 es_ES
dc.description.references Choi, B.-K., Choi, C.-H., Lim, H., 1999. Model-based disturbance attenuation for CNC machining centers in cutting process. IEEE/ASME transactions on mechatronics 4 (2), 157-168. https://doi.org/10.1109/3516.769542 es_ES
dc.description.references Corless, M., Tu, J., 1998. State and input estimation for a class of uncertain systems. Automatica 34 (6), 757-764. https://doi.org/10.1016/S0005-1098(98)00013-2 es_ES
dc.description.references Deng, J., Xue, W., Zhou, X., Mao, Y., 2020. On disturbance rejection control for inertial stabilization(Cat. No. 01CH37228). Vol. 5. IEEE, pp. 4578-4585. es_ES
dc.description.references Doyle, J., Glover, K., Khargonekar, P., Francis, B., 1988. State-space solutionsto standardH2andH∞control problems. In: 1988 American Control Con-ference. IEEE, pp. 1691-1696. es_ES
dc.description.references Doyle, J. C., 1978. Guaranteed margins for LQG regulators. IEEE Transactionson automatic Control 23 (4), 756-757. https://doi.org/10.1109/TAC.1978.1101812 es_ES
dc.description.references Doyle, J. C., Glover, K., Khargonekar, P. P., Francis, B. A., 1989. State-spacesolutions to standard h/sub 2/and h/sub infinity/control problems. IEEETransactions on Automatic Control 34 (8), 831-847. https://doi.org/10.1109/9.29425 es_ES
dc.description.references Edwards, C., Spurgeon, S., 1998. Sliding mode control: theory and applications.Taylor & Francis. https://doi.org/10.1201/9781498701822 es_ES
dc.description.references Fernandez-Camacho, E., Bordons-Alba, C., 2013. Model predictive control.Springer science & business media. es_ES
dc.description.references Francis, B. A., Wonham, W. M., 1976. The internal model principle of controltheory. Automatica 12 (5), 457-465. https://doi.org/10.1016/0005-1098(76)90006-6 es_ES
dc.description.references Freeman, R., Kokotovic, P. V., 2008. Robust nonlinear control design: state-space and Lyapunov techniques. Springer Science & Business Media. es_ES
dc.description.references Fridman, E., 2014. Introduction to time-delay systems: Analysis and control.Springer. https://doi.org/10.1007/978-3-319-09393-2 es_ES
dc.description.references Fujimoto, H., Saito, T., Noguchi, T., 2004. Motion stabilization control of elec-tric vehicle under snowy conditions based on yaw-moment observer. In:The 8th IEEE International Workshop on Advanced Motion Control, 2004.AMC'04. IEEE, pp. 35-40. es_ES
dc.description.references Gao, N., Darouach, M., Voos, H., Alma, M., 2016. New unifiedH∞dynamicobserver design for linear systems with unknown inputs. Automatica 65,43-52. es_ES
dc.description.references Gao, Z., 2006. Active disturbance rejection control: a paradigm shift in feed-back control system design. In: 2006 American control conference. IEEE,pp. 7-pp. es_ES
dc.description.references Gao, Z., 2014. On the centrality of disturbance rejection in automatic control.ISA transactions 53 (4), 850-857. https://doi.org/10.1016/j.isatra.2013.09.012 es_ES
dc.description.references Gao, Z., Huang, Y., Han, J., 2001. An alternative paradigm for control system design. In: Proceedings of the 40th IEEE conference on decision and control (Cat. No. 01CH37228). Vol. 5. IEEE, pp. 4578-4585. es_ES
dc.description.references Gao, Z., Wang, H., 2006. Descriptor observer approaches for multivariable sys-tems with measurement noises and application in fault detection and diag-nosis. Systems & Control Letters 55 (4), 304-313. https://doi.org/10.1016/j.sysconle.2005.08.004 es_ES
dc.description.references Garcia, C. E., Morari, M., 1982. Internal model control. a unifying review and some new results. Industrial & Engineering Chemistry Process Design and Development 21 (2), 308-323. https://doi.org/10.1021/i200017a016 es_ES
dc.description.references Han, H., Yang, Y., Li, L., Ding, S. X., 2018. Observer-based fault detection for uncertain nonlinear systems. Journal of the Franklin Institute 355 (3), 1278-1295. https://doi.org/10.1016/j.jfranklin.2017.12.021 es_ES
dc.description.references Han, J., 2009. From pid to active disturbance rejection control. IEEE transactions on Industrial Electronics 56 (3), 900-906. https://doi.org/10.1109/TIE.2008.2011621 es_ES
dc.description.references Hansen, L. P., Sargent, T. J., 2008. Robustness. Princeton university press. https://doi.org/10.1515/9781400829385 es_ES
dc.description.references Horowitz, I., 1963. Synthesis of Feedback Systems. Academic Press. es_ES
dc.description.references Huang, Y., Xue, W., 2014. Active disturbance rejection control: methodology and theoretical analysis. ISA transactions 53 (4), 963-976. https://doi.org/10.1016/j.isatra.2014.03.003 es_ES
dc.description.references Jain, S., Yogesh, H., 2020. Generalized active disturbance rejection controller for load frequency control in power systems. IEEE Control Systems Letters 4 (1), 73-78. https://doi.org/10.1109/LCSYS.2019.2923168 es_ES
dc.description.references Johnson, C., 1971. Accomodation of external disturbances in linear regulator and servomechanism problems. IEEE Transactions on automatic control 16 (6), 635-644. https://doi.org/10.1109/TAC.1971.1099830 es_ES
dc.description.references Johnson, C. D., 1975. On observers for systems with unknown and inaccessible inputs. International journal of control 21 (5), 825-831. https://doi.org/10.1080/00207177508922036 es_ES
dc.description.references Johnson, C. D., 1986. Disturbance-accommodating control an overview. In: 1986 American Control Conference. IEEE, pp. 526-536. https://doi.org/10.23919/ACC.1986.4788997 es_ES
dc.description.references Kadowaki, S., Ohishi, K., Miyashita, I., Yasukawa, S., 2002. Re-adhesion control of electric motor coach based on disturbance observer and sensor-less vector control. In: Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No. 02TH8579). Vol. 3. IEEE, pp. 1020-1025. es_ES
dc.description.references Kanderian, S. S., Weinzimer, S., Voskanyan, G., Steil, G. M., 2009. Identification of intraday metabolic profiles during closed-loop glucose control in individuals with type 1 diabetes. https://doi.org/10.1177/193229680900300508 es_ES
dc.description.references Kanderian, S. S., Weinzimer, S. A., Steil, G. M., 2012. The identifiable virtual patient model: comparison of simulation and clinical closed-loop study results. Journal of diabetes science and technology 6 (2), 371-379. https://doi.org/10.1177/193229681200600223 es_ES
dc.description.references Kautsky, J., Nichols, N. K., Van Dooren, P., 1985. Robust pole assignment in linear state feedback. International Journal of control 41 (5), 1129-1155. https://doi.org/10.1080/0020718508961188 es_ES
dc.description.references Khalil, H. K., Grizzle, J. W., 2002. Nonlinear systems. Vol. 3. Prentice hall Upper Saddle River, NJ. es_ES
dc.description.references Khargonekar, P. P., Rotea, M. A., 1991. Mixed H2/H1 control: a convex optimization approach. IEEE Transactions on Automatic Control 36 (7), 824- 837. https://doi.org/10.1109/9.85062 es_ES
dc.description.references Khlebnikov, M. V., 2016. Control of linear systems subjected to exogenous disturbances: Combined feedback. In: IEEE International Federation of Automatic Control (IFAC). pp. 111-116. https://doi.org/10.1016/j.ifacol.2016.07.936 es_ES
dc.description.references Kim, K.-S., Rew, K.-H., Kim, S., 2010. Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Transactions on automatic control 55 (8), 1905-1911. https://doi.org/10.1109/TAC.2010.2049522 es_ES
dc.description.references Li, S., Yang, J., Chen,W. H., Chen, X., 2012. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics 59 (12), 4792-4802. https://doi.org/10.1109/TIE.2011.2182011 es_ES
dc.description.references Liu, Z., Liu, J., Wang, L., 2018. Disturbance observer based attitude control for flexible spacecraft with input magnitude and rate constraints. Aerospace Science and Technology 72, 486-492. https://doi.org/10.1016/j.ast.2017.11.036 es_ES
dc.description.references Mayne, D. Q., 2014. Model predictive control: Recent developments and future promise. Automatica 50 (12), 2967-2986. https://doi.org/10.1016/j.automatica.2014.10.128 es_ES
dc.description.references Meditch, J., Hostetter, G., 1973. Observers for systems with unknown and inaccessible inputs. In: 1973 IEEE Conference on Decision and Control including the 12th Symposium on Adaptive Processes. IEEE, pp. 120-124. https://doi.org/10.1109/CDC.1973.269143 es_ES
dc.description.references Mondié, S., Michiels, W., 2003. Finite spectrum assignment of unstable timedelay systems with a safe implementation. IEEE Transactions on Automatic Control 48 (12), 2207-2212. https://doi.org/10.1109/TAC.2003.820147 es_ES
dc.description.references Mukherjee, S., Bai, H., Chakrabortty, A., 2021. Model-based and model-free designs for an extended continuous-time LQR with exogenous inputs. Systems & Control Letters 154, 104983. https://doi.org/10.1016/j.sysconle.2021.104983 es_ES
dc.description.references Ohishi, K., 1983. Torque-speed regulation of DC motor based on load torque estimation. In: IEEJ International Power Electronics Conference, IPECTOKYO, 1983-3. Vol. 2. pp. 1209-1216. es_ES
dc.description.references Petersen, I. R., Tempo, R., 2014. Robust control of uncertain systems: Classical results and recent developments. Automatica 50 (5), 1315-1335. https://doi.org/10.1016/j.automatica.2014.02.042 es_ES
dc.description.references Raff, T., Lachner, F., Allgower, F., 2006. A finite time unknown input observer for linear systems. In: 2006 14th Mediterranean Conference on Control and Automation. IEEE, pp. 1-5. https://doi.org/10.1109/MED.2006.328795 es_ES
dc.description.references Rosenbrock, H., McMorran, P., 1971. Good, bad, or optimal? IEEE Transactions on Automatic Control 16 (6), 552-554. https://doi.org/10.1109/TAC.1971.1099822 es_ES
dc.description.references Sadhu, S., Ghoshal, T. K., 2010. Sight line rate estimation in missile seeker using disturbance observer-based technique. IEEE Transactions on Control Systems Technology 19 (2), 449-454. https://doi.org/10.1109/TCST.2010.2046662 es_ES
dc.description.references Safonov, M. G., 1980. Stability and robustness of multivariable feedback systems. MIT press. https://doi.org/10.7551/mitpress/6428.001.0001 es_ES
dc.description.references Safonov, M. G., 2012. Origins of robust control: Early history and future speculations. Annual Reviews in Control 36 (2), 173-181. https://doi.org/10.1016/j.arcontrol.2012.09.001 es_ES
dc.description.references Sala-Mira, I., Diez, J.-L., Ricarte, B., Bondia, J., 2019. Sliding-mode disturbance observers for an artificial pancreas without meal announcement. Journal of Process Control 78, 68-77. https://doi.org/10.1016/j.jprocont.2019.03.008 es_ES
dc.description.references Sandberg, I. W., 1964. A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element. Bell System Technical Journal 43 (4), 1601-1608. https://doi.org/10.1002/j.1538-7305.1964.tb04100.x es_ES
dc.description.references Sanz, R., Garcia, P., Albertos, P., 2016. Enhanced disturbance rejection for a predictor-based control of lti systems with input delay. Automatica 72, 205- 208. https://doi.org/10.1016/j.automatica.2016.05.019 es_ES
dc.description.references Sanz, R., Garc'ıa, P., D'ıez, J.-L., Bondia, J., 2020. Artificial pancreas system with unannounced meals based on a disturbance observer and feedforward compensation. IEEE Transactions on Control Systems Technology 29 (1), 454-460. https://doi.org/10.1109/TCST.2020.2975147 es_ES
dc.description.references Sanz, R., Garcia, P., Fridman, E., Albertos, P., 2018. Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control 28 (6), 2457- 2467. https://doi.org/10.1002/rnc.4027 es_ES
dc.description.references Sariyildiz, E., Chen, G., Yu, H., 2015. An acceleration-based robust motion controller design for a novel series elastic actuator. IEEE Transactions on Industrial Electronics 63 (3), 1900-1910. https://doi.org/10.1109/TIE.2015.2512228 es_ES
dc.description.references Sariyildiz, E., Oboe, R., Ohnishi, K., 2020. Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Transactions on Industrial Electronics 67 (3), 2042-2053. https://doi.org/10.1109/TIE.2019.2903752 es_ES
dc.description.references Scherer, C., Weiland, S., 2000. Linear matrix inequalities in control. Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands 3 (2). es_ES
dc.description.references Schweppe, F., 1968. Recursive state estimation: Unknown but bounded errors and system inputs. IEEE Transactions on Automatic Control 13 (1), 22-28. https://doi.org/10.1109/TAC.1968.1098790 es_ES
dc.description.references She, J.-H., Xin, X., Pan, Y., 2010. Equivalent-input-disturbance approach- analysis and application to disturbance rejection in dual-stage feed drive control system. IEEE/ASME Transactions on Mechatronics 16 (2), 330-340. https://doi.org/10.1109/TMECH.2010.2043258 es_ES
dc.description.references Stocker, D., Kanderian, S., Cortina, G., Nitzan, T., Plummer, J., Steil, G., Mastrototaro, J., 2006. Virtual patient software system for educating and treating individuals with diabetes. es_ES
dc.description.references Su, J., Chen, W.-H., 2018. Further results on "reduced order disturbance observer for discrete-time linear systems". Automatica 93, 550-553. https://doi.org/10.1016/j.automatica.2018.04.032 es_ES
dc.description.references Ugurlu, B., Nishimura, M., Hyodo, K., Kawanishi, M., Narikiyo, T., 2014. Proof of concept for robot-aided upper limb rehabilitation using disturbance observers. IEEE Transactions on Human-Machine Systems 45 (1), 110-118. https://doi.org/10.1109/THMS.2014.2362816 es_ES
dc.description.references Umeno, T., Hori, Y., 1991. Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Transactions on industrial electronics 38 (5), 363-368. https://doi.org/10.1109/41.97556 es_ES
dc.description.references Wang, C., Dong, W., Wang, J., Ding, Z., 2020. Predictive descriptor observer design for a class of lti systems with applications to quadrotor trajectory tracking. IEEE Transactions on Industrial Electronics, 10019-10028. https://doi.org/10.1109/TIE.2020.3028803 es_ES
dc.description.references Wang, H., Daley, S., 1996. Actuator fault diagnosis: an adaptive observer-based technique. IEEE transactions on Automatic Control 41 (7), 1073-1078. https://doi.org/10.1109/9.508919 es_ES
dc.description.references Wu, A.-G., Duan, G.-R., Fu, Y.-M., 2007. Generalized pid observer design for descriptor linear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 37 (5), 1390-1395. https://doi.org/10.1109/TSMCB.2007.901205 es_ES
dc.description.references Wu, Z.-H., Zhou, H.-C., Guo, B.-Z., Deng, F., 2020. Review and new theoretical perspectives on active disturbance rejection control for uncertain finitedimensional and infinite-dimensional systems. Nonlinear Dynamics, 1-25. https://doi.org/10.1007/s11071-020-05845-7 es_ES
dc.description.references Xiong, Y., Saif, M., 2003. Unknown disturbance inputs estimation based on a state functional observer design. Automatica 39 (8), 1389-1398. https://doi.org/10.1016/S0005-1098(03)00087-6 es_ES
dc.description.references Yang, J., Zolotas, A., Chen, W.-H., Michail, K., Li, S., 2011. Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach. ISA transactions 50 (3), 389-396. https://doi.org/10.1016/j.isatra.2011.01.006 es_ES
dc.description.references Yokoyama, T., Kawamura, A., 1994. Disturbance observer based fully digital controlled PWM inverter for CVCF operation. IEEE Transactions on Power Electronics 9 (5), 473-480. https://doi.org/10.1109/63.321031 es_ES
dc.description.references Zames, G., 1966. On the input-output stability of time-varying nonlinear feedback systems part one: Conditions derived using concepts of loop gain, conicity, and positivity. IEEE transactions on automatic control 11 (2), 228-238. https://doi.org/10.1109/TAC.1966.1098316 es_ES
dc.description.references Zhu, Y., Fridman, E., 2021. Sub-predictors for network-based control under uncertain large delays. Automatica 123, 109350. https://doi.org/10.1016/j.automatica.2020.109350 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem