- -

Fixed point theorems for F- contraction mapping in complete rectangular M-metric space

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point theorems for F- contraction mapping in complete rectangular M-metric space

Mostrar el registro completo del ítem

Asim, M.; Mujahid, S.; Uddin, I. (2022). Fixed point theorems for F- contraction mapping in complete rectangular M-metric space. Applied General Topology. 23(2):363-376. https://doi.org/10.4995/agt.2022.17418

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187137

Ficheros en el ítem

Metadatos del ítem

Título: Fixed point theorems for F- contraction mapping in complete rectangular M-metric space
Autor: Asim, Mohammad Mujahid, Samad Uddin, Izhar
Fecha difusión:
Resumen:
[EN] In this paper, we prove a fixed point result for F- contraction principle in the framework of rectangular M-metric space. An example is also adopted to exhibit the utility of our result. Finally, we apply our fixed ...[+]
Palabras clave: Fixed point , F-contraction , Rectangular M-metric space , Integral equation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.17418
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.17418
Tipo: Artículo

References

M. Asadi, Fixed point theorems for Meir-Keeler type mappings in M-metric spaces with applications, Fixed Point Theory Appl. 2015 (2015), 210. https://doi.org/10.1186/s13663-015-0460-9

M. Asadi, On Ekeland's variational principle in M-metric spaces, Journal of Nonlinear and Convex Anal. 17 (2016), 1151-1158.

M. Asadi, M. Azhini, E. Karapinar and H. Monfared, Simulation functions over M-metric spaces, East Asian Math. J. 33 (2017), 559-570. [+]
M. Asadi, Fixed point theorems for Meir-Keeler type mappings in M-metric spaces with applications, Fixed Point Theory Appl. 2015 (2015), 210. https://doi.org/10.1186/s13663-015-0460-9

M. Asadi, On Ekeland's variational principle in M-metric spaces, Journal of Nonlinear and Convex Anal. 17 (2016), 1151-1158.

M. Asadi, M. Azhini, E. Karapinar and H. Monfared, Simulation functions over M-metric spaces, East Asian Math. J. 33 (2017), 559-570.

M. Asadi, E. Karapinar and P. Salimi, New extension of p-metric spaces with some fixed-points results on M-metric spaces, J. Inequal. Appl. 18 (2014), 1-9. https://doi.org/10.1186/1029-242X-2014-18

M. Asim, A. R. Khan and M. Imdad, Rectangular $M_{b}$-metric spaces and fixed point results, J. Math. Anal. 10 (2019), 10-18. https://doi.org/10.1186/s13660-019-2223-3

M. Asim, S. Mujahid and I. Uddin, Meir-Keeler contraction in rectangular M-metric space, Topol. Algebra Appl. 9 (2021), 96-104. https://doi.org/10.1515/taa-2021-0106

M. Asim, K.S. Nisar, A. Morsy and M. Imdad, Extended rectangular $M_{rxi}$-metric spaces and fixed point results, Mathematics 7 (2019), 1136. https://doi.org/10.3390/math7121136

M. Asim, I. Uddin and M. Imdad, Fixed point results in $M_{nu}$-metric spaces with an application, J. Inequal. Appl. 2019 (2019), 1-19. https://doi.org/10.1186/s13660-019-2223-3

M. Aslantas, H. Sahin and D. Turkoglu, Some Caristi type fixed point theorems, TheJournal of Analysis 29 (2020), 89-103

https://doi.org/10.1007/s41478-020-00248-8

S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math. 3 (1922), 131-181. https://doi.org/10.4064/fm-3-1-133-181

D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. https://doi.org/10.1090/S0002-9939-1969-0239559-9

A. Branciari, A fixed point theorem of Banach-Cacciopoli type on a class of generalized metric spaces, Publ. Math. 57 (2000), 31-37.

S. K. Chatterjee, Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727-730.

Lj. B. Ćirić, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (1971), 19-26.

Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2

Z. Kadelburg and S. Radenović, Notes on some recent papers concerning F-contractions in b-metric spaces, Constr. Math. Anal. 1 (2018), 108-112. https://doi.org/10.33205/cma.468813

R. Kannan, Some results on fixed points, Bull. Cal. Math. 60 (1968), 71-76. https://doi.org/10.2307/2316437

S. Luambano, S. Kumar and G. Kakiko, Fixed point theorem for F-contraction mappings in partial metric spaces, Lobachevskii J. Math. 40 (2019), 183-188. https://doi.org/10.1134/S1995080219020094

S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci. 728 (1994), 183-197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x

A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6

G. Minak, A. Helvaci and I. Altun, Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat 28 (2014), 1143-1151. https://doi.org/10.2298/FIL1406143M

H. Monfared, M. Asadi, M. Azhini and D. O'Regan, F(ψ,ϕ)-contractions for α-admissible mappings on m-metric spaces, Fixed Point Theory and Appl. 2018 (2018), 22. https://doi.org/10.30697/rfpta-2018-004

H. Monfared, M. Azhini and M. Asadi, C-class and F(ψ,ϕ)-contractions on M-metric spaces, Int. J. Nonlinear Anal. Appl. 8 (2017), 209-224.

H. Monfared, M. Azhini and M. Asadi, A generalized contraction principle with control function on M-metric spaces, Nonlinear Functional Analysis and Appl. 22 (2017), 395-402.

W. Onsod, P. Kumam and Y. J. Cho, Fixed points of α-θ-Geraghty type and θ-Geraghty graphic type contractions, Appl. Gen. Topol. 18 (2017), 153-171. https://doi.org/10.4995/agt.2017.6694

N. Y. Özgür, N. Mlaiki, N. Taş and N. Souayah, A generalization of metrics spaces: rectangular M- metric spaces, Math. Sci. 12 (2018), 223-233. https://doi.org/10.1007/s40096-018-0262-4

H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), 210. https://doi.org/10.1186/1687-1812-2014-210

H. Piri, S. Rahrovi, H. Marasi and P. Kumam, F-contraction on asymmetric metric spaces, J. Math. Comput. Sci. 17 (2017), 32-40. https://doi.org/10.22436/jmcs.017.01.03

S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9

H. Sahin, A new type of F-contraction and their best proximity point results with homotopy application, Acta Applicandae Mathematicae 179 (2022), 1-15. https://doi.org/10.1007/s10440-022-00496-9

H. Sahin, I. Altun and D. Turkoglu, Two fixed point results for multivalued F-contractions on M-metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 1839-1849. https://doi.org/10.1007/s13398-018-0585-x

S. Shukla, Partial rectangular metric spaces and fixed point theorems, Sci. World J. 2014 (2014). https://doi.org/10.1186/1687-1812-2014-127

T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), 440-458. https://doi.org/10.1006/jmaa.2000.7151

D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 1-6. https://doi.org/10.1186/1687-1812-2012-94

T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math. 23 (1972), 292-298. https://doi.org/10.1007/BF01304884

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem