- -

Evaluación de la navegabilidad en robots móviles skid-steer con remolques pasivos moviéndose sobre terrenos inclinados

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluación de la navegabilidad en robots móviles skid-steer con remolques pasivos moviéndose sobre terrenos inclinados

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García, Jesús M. es_ES
dc.contributor.author Yánez, Pedro es_ES
dc.contributor.author Martínez, Jorge E. es_ES
dc.date.accessioned 2023-01-12T11:19:38Z
dc.date.available 2023-01-12T11:19:38Z
dc.date.issued 2022-12-28
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/191277
dc.description.abstract [EN] The use of trailers allows robots to increase their load capacity to perform multiple tasks, but their use carries multiple risks. In this research, three metrics are developed to assess the navigability of robots with coupled trailers when moving at low speeds on inclined surfaces: an index that predicts the initiation of rollover in the robot or trailers; another index that estimates the start of the total slip due to the slopes of the terrain, either in the robot or the trailers; and finally, an index that quantifies the robot's ability to address itself and follow a path. These three metrics were developed based on the reaction forces of the wheels with the ground and were validated through  simulation and experimental tests using a Skid Steer robot called Lázaro, demonstrating their effectiveness in estimating the risk condition for which they were designed. es_ES
dc.description.abstract [ES] El uso de remolques permite a los robots aumentar su capacidad de carga para realizar múltiples tareas, pero su uso conlleva múltiples riesgos. En esta investigación, se desarrollan tres métricas para evaluar la navegabilidad de robots con remolques acoplados cuando se mueven a bajas velocidades sobre superficies inclinadas: un í­ndice que predice el inicio del vuelco en el robot o los remolques; otro í­ndice que estima el inicio del deslizamiento total debido a las inclinaciones del terreno, ya sea en el robot o los remolques; y finalmente, un í­ndice que cuantifica la capacidad del robot para direccionarse y seguir una trayectoria. Estas tres métricas fueron desarrolladas con base en las fuerzas de reacción de las ruedas con el suelo y fueron validados a través de simulación y pruebas experimentales utilizando un robot Skid Steer llamado Lázaro, demostrándose su efectividad al estimar la condición de riesgo para la cual fueron diseñados. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo del Decanato de Investigación de la Universidad Nacional Experimental del Táchira bajo los proyectos No. 01-025-2016 y 01-004-2019. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Navigability es_ES
dc.subject Mobile robots es_ES
dc.subject Tip-over stability es_ES
dc.subject Steerability es_ES
dc.subject Slide-down es_ES
dc.subject Tractor trailer es_ES
dc.subject Inclined terrain es_ES
dc.subject Slope negotiation es_ES
dc.subject Navegabilidad es_ES
dc.subject Estabilidad al vuelco es_ES
dc.subject Direccionamiento es_ES
dc.subject Deslizamiento hacia abajo es_ES
dc.subject Tractor-remolque es_ES
dc.subject Terreno inclinado es_ES
dc.subject Superación de pendientes es_ES
dc.subject Robots móviles es_ES
dc.title Evaluación de la navegabilidad en robots móviles skid-steer con remolques pasivos moviéndose sobre terrenos inclinados es_ES
dc.title.alternative Evaluation of navigability in skid-steer mobile robots with passive trailers moving on sloping terrain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.17161
dc.relation.projectID info:eu-repo/grantAgreement/UNET//01-025-2016 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNET//01-004-2019 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation García, JM.; Yánez, P.; Martínez, JE. (2022). Evaluación de la navegabilidad en robots móviles skid-steer con remolques pasivos moviéndose sobre terrenos inclinados. Revista Iberoamericana de Automática e Informática industrial. 20(1):13-24. https://doi.org/10.4995/riai.2022.17161 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.17161 es_ES
dc.description.upvformatpinicio 13 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\17161 es_ES
dc.contributor.funder Universidad Nacional Experimental del Táchira, Venezuela es_ES
dc.description.references Abroshan, M. (2021). Integrated stability and tracking control system for autonomous vehicle-trailer systems. Ontario: University of Waterloo. es_ES
dc.description.references Amezquita-Semprun, K., Del Rosario, M., & Chen, P. (2018). Dynamics model of a differential drive mobile robot towing an off-axle trailer. Int. J. Mech. Eng. Rob. Res , 7 (6), 583-589. DOI: 10.18178/ijmerr.7.6.583-589. https://doi.org/10.18178/ijmerr.7.6.583-589 es_ES
dc.description.references Bako, S., Ige, B., Nasir, A., & Musa, N. (2021). Stability analysis of a semi-trailer articulated vehicle: a review. International Journal of Automotive Science and Technology , 5 (2), 131-140. DOI: 10.30939/ijastech..855733. https://doi.org/10.30939/ijastech..855733 es_ES
dc.description.references García, J. M., Bohórquez, A., & Valero, A. (2020a). Efecto de la suspensión en el direccionamiento de un robot skid steer moviéndose sobre terrenos duros con diferente rugosidad. Ingenierías USBMed , 11 (1), 18-30. DOI: 10.21500/20275846.4380. https://doi.org/10.21500/20275846.4380 es_ES
dc.description.references García, J. M., Bohórquez, A., & Valero, A. (2020b). Suspension effect in tip-over stability and steerability of robots moving on sloping terrains. IEEE Latin America Transactions , 18 (8), 1381-1389. DOI: 10.1109/TLA.2020.9111673. https://doi.org/10.1109/TLA.2020.9111673 es_ES
dc.description.references García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2017a). Caster-leg aided maneuver for negotiating surface discontinuities with a wheeled skid-steer mobile robot. Robotics and Autonomous Systems , 91, 25-37. DOI: 10.1016/j.robot.2016.12.007. https://doi.org/10.1016/j.robot.2016.12.007 es_ES
dc.description.references García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2017b). Slide-Down Prevention for Wheeled Mobile Robots on Slopes. 3rd International Conference on Mechatronics and Robotics Engineering, (págs. 1-6). Paris. DOI: 10.1145/3068796.3068820. https://doi.org/10.1145/3068796.3068820 es_ES
dc.description.references García, J. M., Medina, I., Martínez, J. L., García-Cerezo, A., Linares, A., & Porras, C. (2017c). Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo. Revista Iberoamericana de Automática e Informática Industrial , 14, 174-183. DOI: 10.1016/j.riai.2016.09.012. https://doi.org/10.1016/j.riai.2016.09.012 es_ES
dc.description.references Go, Y., Yin, X., & Bowling, A. (2006). Navigability of multi-legged robots. IEEE/ASME Transactions on Mechatronics , 11 (1), 1-8. DOI: 10.1109/TMECH.2005.863361. https://doi.org/10.1109/TMECH.2005.863361 es_ES
dc.description.references Guevara, L., Michałek, M., & Cheein, F. (2020). Collision risk reduction of N-trailer agricultural machinery by off-track minimization. Computers and electronics in agriculture , 178, 3-12. DOI: 10.1016/j.compag.2020.105757. https://doi.org/10.1016/j.compag.2020.105757 es_ES
dc.description.references Hatano, M., & Obara, H. (2003). Stability evaluation for mobile manipulators using criteria based on reaction. SICE Annual Conference, (págs. 2050-2055). Fukui. es_ES
dc.description.references Kassaeiyan, P., Tarvirdizadeh, B., & Alipour, K. (2019). Control of tractor-trailer wheeled robots considering self-collision effect and actuator saturation limitations. Mechanical Systems and Signal Processing , 127, 388-411. DOI: 10.1016/j.ymssp.2019.03.016. https://doi.org/10.1016/j.ymssp.2019.03.016 es_ES
dc.description.references Khalaji, A., & Jalalnezhad, M. (2019). Control of a tractor-trailer robot subjected to wheel slip. Journal of Multi-body Dynamics , 0 (0), 1-12. DOI: 10.1177/1464419319839848. https://doi.org/10.1177/1464419319839848 es_ES
dc.description.references Khalaji, A., & Moosavian, S. (2015). Modified transpose Jacobian control of a tractor-trailer wheeled robot. Journal of Mechanical Science and Technology , 29 (9), 3961-3969. DOI: 10.1007/s12206-015-0841-3. https://doi.org/10.1007/s12206-015-0841-3 es_ES
dc.description.references Korayem, A., Khajepour, A., & Fidan, B. (2020). Vehicle-trailer lateral velocity estimation using constrained unscented transformation. Vehicle System Dynamics , 1-28. DOI: 10.1080/00423114.2020.1849745. https://doi.org/10.1080/00423114.2020.1849745 es_ES
dc.description.references Kotur, P. (2019). Safe estimation of vehicle side-slip for an autonomous heavy vehicle. Göteborg: Chalmers University of Technology. es_ES
dc.description.references Lewis, C. (1982). Industrial and business forecasting methods. Londres: Butterworths Publishing. es_ES
dc.description.references Li, Z., Cheng, H., Ma, J., & Zhou, H. (2020). Research on parking control of semi-trailer truck. 4th CAA International Conference on Vehicular Control and Intelligence, (págs. 424-429). Hangzhou. DOI: 10.1109/CVCI51460.2020.9338617. https://doi.org/10.1109/CVCI51460.2020.9338617 es_ES
dc.description.references Martínez, J. L., Morales, J., Mandow, A., & García-Cerezo, A. (2008). Steering limitations for a vehicle pulling passive trailers. IEEE Transactions on control systems technology , 16 (4), 809-818. DOI: 10.1109/TCST.2007.916293. https://doi.org/10.1109/TCST.2007.916293 es_ES
dc.description.references Meghdari, A., Naderi, D., & Alam, M. (2005). Neural-network-based observer for real-time tipover estimation. Mechatronics , 15, 989-1004. DOI: 10.1016/j.mechatronics.2005.03.005. https://doi.org/10.1016/j.mechatronics.2005.03.005 es_ES
dc.description.references Morales, J., Mandow, A., Martínez, J. L., Reina, A., & García-Cerezo, A. (2013a). Driver assistance system for passive multi-trailer vehicles with haptic steering limitations on the leading unit. Sensors , 13, 4485-4498. DOI:10.3390/s130404485. https://doi.org/10.3390/s130404485 es_ES
dc.description.references Morales, J., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2013b). Steering the last trailer as a virtual tractor for reversing vehicles with passive on- and off-axle hitches. IEEE Transactions on Industrial Electronics , 60 (12), 5729-5736. DOI: 10.1109/TIE.2013.2240631. https://doi.org/10.1109/TIE.2013.2240631 es_ES
dc.description.references Morales, J., Martínez, J. L., Mandow, A., & Medina, I. (2009). Virtual steering limitations for reversing an articulated vehicle with off-axle passive trailers. 35th Annual Conference of IEEE Industrial Electronics, (págs. 2385-2390). Porto. DOI: 10.1109/IECON.2009.5415436. https://doi.org/10.1109/IECON.2009.5415436 es_ES
dc.description.references Morales, J., Martínez, J. L., Mandow, A., Serón, J., & García-Cerezo, A. (2013c). Static tip-over stability analysis for a robotic vehicle with a single-axle trailer on slopes based on altered supporting polygons. IEEE/ASME Transactions on Mechatronics , 18 (2), 697-705. DOI: 10.1109/TMECH.2011.2181955. https://doi.org/10.1109/TMECH.2011.2181955 es_ES
dc.description.references Pérez, W., Arroyave, J., & Acevedo, S. (2010). Determinacion experimental del coeficiente de fricción empleando sensores movimiento. Scientia et Technica , 16 (44), 357-362. DOI: 10.22517/23447214.1769. es_ES
dc.description.references Shojaei, K. (2021). Intelligent coordinated control of an autonomous tractor-trailer and a combine harvester. European Journal of Control , 59, 82-98. DOI: 10.1016/J.EJCON.2021.02.005. https://doi.org/10.1016/j.ejcon.2021.02.005 es_ES
dc.description.references Song, T., Xi, F., Guo, S., Tu, X., & Li, X. (2018). Slip Analysis for a Wheeled Mobile Manipulator. Journal of Dynamic Systems Measurement and Control , 140, 1-12. DOI: 10.1115/1.4037287. https://doi.org/10.1115/1.4037287 es_ES
dc.description.references Wang, X., Taghia, J., & Katupitiya, J. (2016). Robust model predictive control for path tracking of atracked vehicle with a steerable trailer in the presence of slip. IFAC-PapersOnLine , 49 (16), 469-474. DOI: 10.1016/j.ifacol.2016.10.085. https://doi.org/10.1016/j.ifacol.2016.10.085 es_ES
dc.description.references Yuan, J. (2017). Hierarchical motion planning for multisteering tractor-trailer mobile robots with on-axle hitching. IEEE/ASME Transactions on Mechatronics , 22 (4), 1652-1662. DOI: 10.1109/TMECH.2017.2695651. https://doi.org/10.1109/TMECH.2017.2695651 es_ES
dc.description.references Zhao, H., Chen, W., Zhou, S., Liu, Z., Zheng, F., & Liu, Y. (2020). Online trajectory planning for an industrial tractor towing multiple full trailers. IEEE International Conference on Robotics and Automation, (págs. 6089-6095). Paris. DOI: 10.1109/ICRA40945.2020.9196656. https://doi.org/10.1109/ICRA40945.2020.9196656 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem