- -

Metodología para el modelado y la estimación de parámetros del proceso de crecimiento de Lobesia botrana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metodología para el modelado y la estimación de parámetros del proceso de crecimiento de Lobesia botrana

Mostrar el registro completo del ítem

Aguirre-Zapata, E.; Garcia-Tirado, J.; Morales, H.; Di Sciascio, F.; Amicarelli, AN. (2022). Metodología para el modelado y la estimación de parámetros del proceso de crecimiento de Lobesia botrana. Revista Iberoamericana de Automática e Informática industrial. 20(1):68-79. https://doi.org/10.4995/riai.2022.17746

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191282

Ficheros en el ítem

Metadatos del ítem

Título: Metodología para el modelado y la estimación de parámetros del proceso de crecimiento de Lobesia botrana
Otro titulo: Methodology for modeling and parameter estimation of the growth process of Lobesia botrana
Autor: Aguirre-Zapata, Estefania Garcia-Tirado, Jose Morales, Humberto di Sciascio, Fernando Amicarelli, Adriana N.
Fecha difusión:
Resumen:
[EN] Lobesia botrana (L. botrana), is a quarantine pest that causes damage to grapevines and generates economic losses for the region of Cuyo in Argentina. Different researchers have sought to safeguard the integrity of ...[+]


[ES] Lobesia botrana (L. botrana), es una plaga cuarentenaria que provoca danos a la vid, y genera perdidas económicas para la región de Cuyo en Argentina. Diferentes investigaciones han buscado salvaguardar la integridad ...[+]
Palabras clave: Modeling and identification of biological systems , Parameter estimation , Gray box modeling , Lobesia botrana , Nonlinear least-squares , Structural identifiability , Modelado e identificación de sistemas biológicos , Estimación paramétrica , Modelado de caja gris , Mínimos cuadrados no lineales , Identificabilidad estructural
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.17746
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.17746
Agradecimientos:
Estefanía Aguirre-Zapata esta financiada por una beca doctoral latinoamericana del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Argentina, y cofinanciada por el programa ENLAZAMUNDOS de la Agencia ...[+]
Tipo: Artículo

References

Aguirre-Zapata, E., Morales, H., Dagatti, C. V., Di Sciascio, F., Amicarelli, A. N., 2022. Semi physical growth model of lobesia botrana under laboratory conditions for argentina's cuyo region. Ecological Modelling 464, 109803. https://doi.org/10.1016/j.ecolmodel.2021.109803

Asprion, N., Böttcher, R., Pack, R., Stavrou, M.-E., H¨oller, J., Schwientek, J., Bortz, M., 2019. Gray-box modeling for the optimization of chemical processes. Chemie Ingenieur Technik 91 (3), 305-313. https://doi.org/10.1002/cite.201800086

Balsa-Canto, E., Alonso, A. A., Banga, J. R., 2010. An iterative identification procedure for dynamic modeling of biochemical networks. BMC systems biology 4 (1), 1-18. https://doi.org/10.1186/1752-0509-4-11 [+]
Aguirre-Zapata, E., Morales, H., Dagatti, C. V., Di Sciascio, F., Amicarelli, A. N., 2022. Semi physical growth model of lobesia botrana under laboratory conditions for argentina's cuyo region. Ecological Modelling 464, 109803. https://doi.org/10.1016/j.ecolmodel.2021.109803

Asprion, N., Böttcher, R., Pack, R., Stavrou, M.-E., H¨oller, J., Schwientek, J., Bortz, M., 2019. Gray-box modeling for the optimization of chemical processes. Chemie Ingenieur Technik 91 (3), 305-313. https://doi.org/10.1002/cite.201800086

Balsa-Canto, E., Alonso, A. A., Banga, J. R., 2010. An iterative identification procedure for dynamic modeling of biochemical networks. BMC systems biology 4 (1), 1-18. https://doi.org/10.1186/1752-0509-4-11

Bäumelt, T., Dostal, J., 2020. Distributed agent-based building grey-box model identification. Control Engineering Practice 101, 104427.

https://doi.org/10.1016/j.conengprac.2020.104427

Bellu, G., Saccomani, M. P., Audoly, S., D'Angi'o, L., 2007. Daisy: A new software tool to test global identifiability of biological and physiological systems. Computer methods and programs in biomedicine 88 (1), 52-61. https://doi.org/10.1016/j.cmpb.2007.07.002

Brastein, O. M., Sharma, R., Skeie, N.-O., 2019. Sensor placement and parameter identifiability in grey-box models of building thermal behaviour. https://doi.org/10.3384/ecp2017051

Burgardta, M. I., da Silvaa, S. M., Ohaniana, G., San Blasb, G., McLeoda, J. N., Burana, M., 2010. Datos preliminares sobre el estudio de la "polilla de la vid", lobesia botrana (lepidoptera. tortricidae), en mendoza.

Carmona Torres, H., sep 2019. Pheromones for Lobesia pest control are available (in spanish).

Castex, V., Cortazar-atauri, I. G. D., Calanca, P., Beniston, M., Moreau, J., 2020. Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies. Ecological Modelling 420 (December 2019), 108946. https://doi.org/10.1016/j.ecolmodel.2020.108946

Chis, O., Banga, J. R., Balsa-Canto, E., 2011. Genssi: a software toolbox for structural identifiability analysis of biological models. Bioinformatics 27 (18), 2610-2611. https://doi.org/10.1093/bioinformatics/btr431

Chis, O.-T., Banga, J. R., Balsa-Canto, E., 2011. Structural identifiability of systems biology models: a critical comparison of methods. PloS one 6 (11), e27755. https://doi.org/10.1371/journal.pone.0027755

de Estudios Economicos de Bodegas de Argentina, C., 2020. Informe de actividad de la industria segundo trimestre de 2020.

Garcia-Tirado, J., Zuluaga-Bedoya, C., Breton, M. D., 2018. Identifiability analysis of three control-oriented models for use in artificial pancreas systems. Journal of diabetes science and technology 12 (5), 937-952. https://doi.org/10.1177/1932296818788873

Herrera, M. E., Dagatti, C. V., Becerra, V. C., 2016. A practical rearing method for Lobesia botrana den. schiff. (lepidoptera: Tortricidae) under laboratory conditions (in spanish). Magazine of the Argentine Entomological Society 75, 160-164.

Hong, H., Ovchinnikov, A., Pogudin, G., Yap, C., 8 2019. Sian: Software for structural identifiability analysis of ode models. Bioinformatics 35, 2873-2874. https://doi.org/10.1093/bioinformatics/bty1069

Hotvedt, M., Grimstad, B., Imsland, L., 2021. Identifiability and physical interpretability of hybrid, gray-box models-a case study. IFAC-PapersOnLine 54 (3), 389-394. https://doi.org/10.1016/j.ifacol.2021.08.273

Joubert, D., Stigter, J. D., Molenaar, J., 12 2021. Assessing the role of initial conditions in the local structural identifiability of large dynamic models. Scientific Reports 11. https://doi.org/10.1038/s41598-021-96293-9

Lema-Perez, L., 2018. Parameters Interpretability in Phenomenological-Based Semiphysical Models . A Human Glucose Homeostasis Model. Doctoral thesis, Universidad Nacional de Colombia. https://doi.org/10.1101/446583

Lessio, F., Alma, A., 2021. Models applied to grapevine pests: A review. insects 2021, 12, 169. https://doi.org/10.3390/insects12020169

Ljung, L., Torkel, G., 1994. Modeling of dynamic systems. Prentice Hall information and system sciences series, New Jersey 07632.

Ortega-Lopez, V., Amo-Salas, M., Ortiz-Barredo, A., Diez-Navajas, A., 2014. Male flight phenology of the european grapevine moth lobesia botrana (lepidoptera: Tortricidae) in different wine-growing regions in spain. Bulletin of entomological research 104 (5), 566-575. https://doi.org/10.1017/S0007485314000339

Pasquali, S., Soresina, C., 2020. Estimation of the mortality rate functions from time series field data in a stage-structured demographic model for Lobesia botrana, 0-2.

Rios Castro, F. A., et al., 2016. Calculo de temperatura umbral y requerimientos termicos para Lobesia botrana a den. y schiff bajo condiciones de laboratorio. Repositorio Acad'emico de la Universidad de Chile.

SENASA, 2009. Resoluci'on 362-2009. Simon, D., 2006. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons.

Simon, D., 2006. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons. https://doi.org/10.1002/0470045345

Torres Vila, L. M., 1995. Regulatory factors of biotic potential and polyandry in the grape cluster moth Lobesia botrana Den. and Schiff (in spanish). Ph.D. thesis, Universidad Politecnica of Madrid.

Touzeau, J., 1981. Modeling of the evolution of the eudemis of the vine for the midi-pyren'ees region (in french). Bol Zool Agr Bach II 16, 26-8.

Villaverde, A. F., Barreiro, A., Papachristodoulou, A., 2016. Structural identifiability of dynamic systems biology models. PLoS computational biology 12 (10), e1005153. https://doi.org/10.1371/journal.pcbi.1005153

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem