- -

Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido

Mostrar el registro completo del ítem

Gomez, J.; Rossomando, F.; Capraro, F.; Soria, C. (2022). Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido. Revista Iberoamericana de Automática e Informática industrial. 20(1):93-103. https://doi.org/10.4995/riai.2022.17106

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191287

Ficheros en el ítem

Metadatos del ítem

Título: Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido
Otro titulo: Real-time neuro-adaptive PI control of soil moisture using a hybrid model
Autor: Gomez, Juan Rossomando, Francisco Capraro, Flavio Soria, Carlos
Fecha difusión:
Resumen:
[EN] In the agriculture developed in the mountain valleys of Argentina, the efficient use of water for irrigation is essential for the development and sustainability of agricultural enterprises. In order to address this ...[+]


[ES] En la agricultura que se desarrolla en los valles cordilleranos de Argentina, el uso eficiente del agua destinada para el riego es fundamental para el desarrollo y sustentabilidad de los emprendimientos agrícolas. A ...[+]
Palabras clave: Precise irrigation , Soil moisture model , Drip irrigation , Neural PI control , Riego preciso , Modelo de humedad del suelo , Riego por goteo , Control PI neuronal
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.17106
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.17106
Agradecimientos:
Este trabajo ha sido realizado gracias al apoyo de la Universidad Nacional de San Juan y del Consejo Nacional de Investigaciones científicas y Técnicas (CONICET) de Argentina.
Tipo: Artículo

References

Albertos, P., Mareels, I., 01 2010. Feedback and Control for Everyone. DOI: 10.1007/978-3-642-03446-6 https://doi.org/10.1007/978-3-642-03446-6

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 2006. Evapotranspiración del cultivo: guías para la determinaci'ón de los requerimientos de agua de los cultivos. FAO Roma, Italia, 298.

Arbat, G., Puig, J., Poch, R., Ramírez de Cartagena, F., Barragán, J., 2003. Evaluation of numerical models of water flow in soil hydrus-2d and simdas under localized irrigation. [+]
Albertos, P., Mareels, I., 01 2010. Feedback and Control for Everyone. DOI: 10.1007/978-3-642-03446-6 https://doi.org/10.1007/978-3-642-03446-6

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 2006. Evapotranspiración del cultivo: guías para la determinaci'ón de los requerimientos de agua de los cultivos. FAO Roma, Italia, 298.

Arbat, G., Puig, J., Poch, R., Ramírez de Cartagena, F., Barragán, J., 2003. Evaluation of numerical models of water flow in soil hydrus-2d and simdas under localized irrigation.

Arbat, G., Puig-Bargués, J., Duran-Ros, M., Barragan, J., Cartagena, F., 10 2013. Drip-irriwater: Computer software to simulate soil wetting patterns under surface drip irrigation. Computers and Electronics in Agriculture 98, 183. DOI: 10.1016/j.compag.2013.08.009

https://doi.org/10.1016/j.compag.2013.08.009

Armstrong, C., Wilson, T., 1983. Computer model for moisture distribution in stratified soils under a trickle source. Transactions - American Society of Agricultural Engineers 26 (6), 1704-1709, cited By 12. https://doi.org/10.13031/2013.33829

Bianchini, M., Frasconi, P., Gori, M., 1995. Learning without local minima in radial basis function networks. IEEE Transactions on Neural Networks 6 (3), 749-756. DOI: 10.1109/72.377979 https://doi.org/10.1109/72.377979

Capraro, F., Pati˜no, D., Tosetti, S., Schugurensky, C., April 2008. Neural network-based irrigation control for precision agriculture. In: 2008 IEEE International Conference on Networking, Sensing and Control. pp. 357-362. https://doi.org/10.1109/ICNSC.2008.4525240

Capraro, F., Tosetti, S., Vita Serman, F., 2011. Real-time soil moisture control for very high frequency drip irrigation in olive groves. Acta horticulturae (888), 239. https://doi.org/10.17660/ActaHortic.2011.888.27

Choudhary, S., Gaurav, V., Singh, A., Agarwal, S., 2019. Autonomous crop irrigation system using artificial intelligence. International Journal of Engineering and Advanced Technology 8 (5 Special Issue), 46-51, cited By 0.

Edwards, C., Spurgeon, S., 1998. Sliding Mode Control: Theory And Applications. Series in Systems and Control. Taylor & Francis. https://doi.org/10.1201/9781498701822

Elnesr, M., Alazba, P., 10 2017. Simulation of water distribution under surface dripper using artificial neural networks. Computers and Electronics in Agriculture 143, 90-99. https://doi.org/10.1016/j.compag.2017.10.003

FAO, 2016. Aquastat base de datos. Organizaci'on de las Naciones Unidas para la Alimentación y la Agricultura.

Feddes, R., Hoff, H., Bruen, M., Dawson, T., De Rosnay, P., Dirmeyer, P., Jackson, R., Kabat, P., Kleidon, A., Lilly, A., Pitman, A., Dec. 2001. Modeling root water uptake in hydrological and climate models. Bulletin - American Meteorological Society 82 (12), 2797-2809. https://doi.org/10.1175/1520-0477(2001)082<2797:MRWUIH>2.3.CO;2

Girosi, F., Poggio, T., 1990. Networks and the best approximation property. Biological Cybernetics 63, 169-176. https://doi.org/10.1007/BF00195855

Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. International edition. Prentice Hall.

Hung, L.-C., Chung, H.-Y., 2007. Decoupled control using neural networkbased sliding-mode controller for nonlinear systems. Expert Syst. Appl. 32, 1168-1182. https://doi.org/10.1016/j.eswa.2006.02.024

Khatri, K. C., 1984. Simulation of soil moisture migration from a point source. Ph.D. thesis.

Knox, J., Kay, M., Weatherhead, E., 2012. Water regulation, crop production, and agricultural water management understanding farmer perspectives on irrigation efficiency. Agricultural Water Management 108, 3-8, irrigation efficiency and productivity: scales, systems and science. https://doi.org/10.1016/j.agwat.2011.06.007

Liao, Y., Fang, S.-C., Nuttle, H., 10 2003. Relaxed conditions for radial-basis function networks to be universal approximators. Neural networks : the official journal of the International Neural Network Society 16, 1019-28. DOI: 10.1016/S0893-6080(02)00227-7 https://doi.org/10.1016/S0893-6080(02)00227-7

Lozoya, C., Mendoza, C., Mejía, L., Quintana, J., Mendoza, G., Bustillos, M., Arras, O., Solís, L., 2014. Model predictive control for closed-loop irrigation. IFAC Proceedings Volumes 47 (3), 4429 - 4434, 19th IFAC World Congress. https://doi.org/10.3182/20140824-6-ZA-1003.02067

Park, J., Sandberg, I. W., mar 1993. Approximation and radial-basis-function networks. Neural Comput. 5 (2), 305-316. https://doi.org/10.1162/neco.1993.5.2.305

Prado Hernández, J., Rivas, M., Lezama, A., Carrillo, M., Peña, V. M., Valenzuela, H., Paz, O., 10 2017. Modelo empírico del patrón de humedad en un suelo orgánico de méxico con riego por goteo superficial.

Pujolràs, G. A., 2006. Desarrollo y validación de un modelo de simulación de la dinámica del agua en el suelo. aplicación al diseño agronómico y al manejo en riego localizado. Ph.D. thesis.

Ramirez de Cartagena Bisbe, F., Sáinz Sánchez, M. A., 1997. Modelo de distribución de agua en suelo regado por goteo. Ingeniería del agua 4 (1). https://doi.org/10.4995/ia.1997.2716

Rossomando, F., Soria, C., Carelli, R., 08 2012. Neural network-based com-pensation control of mobile robots with partially known structure. ControlTheory Applications, IET 6, 1851-1860.DOI:10.1049/iet-cta.2011.0581 https://doi.org/10.1049/iet-cta.2011.0581

Rossomando, F., Soria, C., Carelli, R., 06 2014. Sliding mode neuro adaptivecontrol in trajectory tracking for mobile robots. Journal of Intelligent Ro-botic Systems 74. https://doi.org/10.1007/s10846-013-9843-5

Sahbani, F., Ferjani, E., 06 2018. Identification and modelling of drop by drop irrigation system for tomato plants under greenhouse conditions. Irrigation and Drainage 67. https://doi.org/10.1002/ird.2253

Simunek, J., Sejna, M., Van Genuchten, M., 2018. New features of version 3 of the hydrus (2d/3d) computer software package. Journal of Hydrology and Hydromechanics 66 (2), 133-142, cited By 4. https://doi.org/10.1515/johh-2017-0050

Slotine, J., Slotine, J., Li, W., 1991. Applied Nonlinear Control. Prentice Hall.

Smith, R. J., Baillie, J. N., McCarthy, A. C., Raine, S. R., Baillie, C. P., 2010. Review of precision irrigation technologies and their application. Tech. rep.

Utkin, V. I., 1992. Sliding modes in optimization and control problems. Van der Ploeg, R., Benecke, P., 1974. Unsteady, unsaturated, n-dimensional moisture flow in soil: A computer simulation program. Proc Soil Sci Soc Am 38 (6), 881-885, cited By 21. https://doi.org/10.2136/sssaj1974.03615995003800060016x

Van der Ploeg, R., Benecke, P., 1974. Unsteady, unsaturated, n-dimensionalmoisture flow in soil: A computer simulation program. Proc Soil Sci SocAm 38 (6), 881-885, cited By 21. https://doi.org/10.2136/sssaj1974.03615995003800060016x

Van Yee, P., Haykin, S., 2001 - 2001. Regularized radial basis function networks : theory and applications / Paul Van Yee, Simon Haykin. Adaptive and learning systems for signal processing, communications, and control. John Wiley, New York.

Vita Serman, F., Capraro, F., Tosetti, S., Cornejo, V., Carelli, A., Ceci, L., 05 2012. Intelligent irrigation control in olive groves (olea europaea l.): A novel approach for water resource optimization. Acta Horticulturae 949. DOI: 10.17660/ActaHortic.2012.949.50 https://doi.org/10.17660/ActaHortic.2012.949.50

Vrugt, J., Hopmans, J., Simunek, Jiri, J., 07 2001. Calibration of a twodimensional root water uptake model. Fluid Phase Equilibria 65, 1027- 1037. DOI: 10.2136/sssaj2001.6541027x https://doi.org/10.2136/sssaj2001.6541027x

Wray, J., Green, G. G., 1995. Neural networks, approximation theory, and finite precision computation. Neural Networks 8 (1), 31-37. https://doi.org/10.1016/0893-6080(94)00056-R

Yahyaoui, I., Tadeo, F., Segatto, M. V., 2017. Energy and water management for drip-irrigation of tomatoes in a semi-arid district. AgriculturalWater Management 183, 4 - 15, special Issue: Advances on ICTs for Water Management in Agriculture. https://doi.org/10.1016/j.agwat.2016.08.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem