- -

Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomez, Juan es_ES
dc.contributor.author Rossomando, Francisco es_ES
dc.contributor.author Capraro, Flavio es_ES
dc.contributor.author Soria, Carlos es_ES
dc.date.accessioned 2023-01-12T13:01:25Z
dc.date.available 2023-01-12T13:01:25Z
dc.date.issued 2022-12-28
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/191287
dc.description.abstract [EN] In the agriculture developed in the mountain valleys of Argentina, the efficient use of water for irrigation is essential for the development and sustainability of agricultural enterprises. In order to address this challenge, it is proposed to develop a hybrid model to represent as faithfully as possible the dynamics of water content in an irrigated soil, including water extraction by a crop. For this purpose, a mathematical model of the process is formulated based on the general flow equation, which has been solved by means of finite differences. A radial-based neural network is incorporated into this structure to compensate off-line the model output at a point on the ground, identifying the output error. In addition, this study incorporates the design of an adaptive irrigation controller for unknown dynamics. The design is based on sliding surfaces in combination with PI and neural networks, with  the goal of control objective is to maintain the soil water content at reference values setting.  es_ES
dc.description.abstract [ES] En la agricultura que se desarrolla en los valles cordilleranos de Argentina, el uso eficiente del agua destinada para el riego es fundamental para el desarrollo y sustentabilidad de los emprendimientos agrícolas. A fin de abordar este desafío, se propone lograr un modelo híbrido que permita representar con la mayor fidelidad posible la dinámica del contenido de agua en un suelo bajo riego por goteo, incluyendo la extracción de agua por parte de un cultivo. Para esto, se cuenta con la formulación de un  modelo matemático del proceso basado en la ecuación general de flujo, la cual ha sido resuelta mediante diferencias finitas. Se incorpora a esta estructura una red neuronal de base radial (RBF) para compensar de manera off-line la salida del modelo en un punto del suelo, identificando el error de salida. Además, este estudio incorpora el diseño de un controlador de riego de tipo adaptable para dinámicas desconocidas. El diseño está basado en superficies deslizantes en combinación PI y redes neuronales, siendo el objetivo de control mantener el contenido de agua en el suelo a determinado valor de referencia establecido. es_ES
dc.description.sponsorship Este trabajo ha sido realizado gracias al apoyo de la Universidad Nacional de San Juan y del Consejo Nacional de Investigaciones científicas y Técnicas (CONICET) de Argentina. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Precise irrigation es_ES
dc.subject Soil moisture model es_ES
dc.subject Drip irrigation es_ES
dc.subject Neural PI control es_ES
dc.subject Riego preciso es_ES
dc.subject Modelo de humedad del suelo es_ES
dc.subject Riego por goteo es_ES
dc.subject Control PI neuronal es_ES
dc.title Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido es_ES
dc.title.alternative Real-time neuro-adaptive PI control of soil moisture using a hybrid model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.17106
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gomez, J.; Rossomando, F.; Capraro, F.; Soria, C. (2022). Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido. Revista Iberoamericana de Automática e Informática industrial. 20(1):93-103. https://doi.org/10.4995/riai.2022.17106 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.17106 es_ES
dc.description.upvformatpinicio 93 es_ES
dc.description.upvformatpfin 103 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\17106 es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.contributor.funder Universidad Nacional de San Juan, Argentina es_ES
dc.description.references Albertos, P., Mareels, I., 01 2010. Feedback and Control for Everyone. DOI: 10.1007/978-3-642-03446-6 https://doi.org/10.1007/978-3-642-03446-6 es_ES
dc.description.references Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 2006. Evapotranspiración del cultivo: guías para la determinaci'ón de los requerimientos de agua de los cultivos. FAO Roma, Italia, 298. es_ES
dc.description.references Arbat, G., Puig, J., Poch, R., Ramírez de Cartagena, F., Barragán, J., 2003. Evaluation of numerical models of water flow in soil hydrus-2d and simdas under localized irrigation. es_ES
dc.description.references Arbat, G., Puig-Bargués, J., Duran-Ros, M., Barragan, J., Cartagena, F., 10 2013. Drip-irriwater: Computer software to simulate soil wetting patterns under surface drip irrigation. Computers and Electronics in Agriculture 98, 183. DOI: 10.1016/j.compag.2013.08.009 es_ES
dc.description.references https://doi.org/10.1016/j.compag.2013.08.009 es_ES
dc.description.references Armstrong, C., Wilson, T., 1983. Computer model for moisture distribution in stratified soils under a trickle source. Transactions - American Society of Agricultural Engineers 26 (6), 1704-1709, cited By 12. https://doi.org/10.13031/2013.33829 es_ES
dc.description.references Bianchini, M., Frasconi, P., Gori, M., 1995. Learning without local minima in radial basis function networks. IEEE Transactions on Neural Networks 6 (3), 749-756. DOI: 10.1109/72.377979 https://doi.org/10.1109/72.377979 es_ES
dc.description.references Capraro, F., Pati˜no, D., Tosetti, S., Schugurensky, C., April 2008. Neural network-based irrigation control for precision agriculture. In: 2008 IEEE International Conference on Networking, Sensing and Control. pp. 357-362. https://doi.org/10.1109/ICNSC.2008.4525240 es_ES
dc.description.references Capraro, F., Tosetti, S., Vita Serman, F., 2011. Real-time soil moisture control for very high frequency drip irrigation in olive groves. Acta horticulturae (888), 239. https://doi.org/10.17660/ActaHortic.2011.888.27 es_ES
dc.description.references Choudhary, S., Gaurav, V., Singh, A., Agarwal, S., 2019. Autonomous crop irrigation system using artificial intelligence. International Journal of Engineering and Advanced Technology 8 (5 Special Issue), 46-51, cited By 0. es_ES
dc.description.references Edwards, C., Spurgeon, S., 1998. Sliding Mode Control: Theory And Applications. Series in Systems and Control. Taylor & Francis. https://doi.org/10.1201/9781498701822 es_ES
dc.description.references Elnesr, M., Alazba, P., 10 2017. Simulation of water distribution under surface dripper using artificial neural networks. Computers and Electronics in Agriculture 143, 90-99. https://doi.org/10.1016/j.compag.2017.10.003 es_ES
dc.description.references FAO, 2016. Aquastat base de datos. Organizaci'on de las Naciones Unidas para la Alimentación y la Agricultura. es_ES
dc.description.references Feddes, R., Hoff, H., Bruen, M., Dawson, T., De Rosnay, P., Dirmeyer, P., Jackson, R., Kabat, P., Kleidon, A., Lilly, A., Pitman, A., Dec. 2001. Modeling root water uptake in hydrological and climate models. Bulletin - American Meteorological Society 82 (12), 2797-2809. https://doi.org/10.1175/1520-0477(2001)082<2797:MRWUIH>2.3.CO;2 es_ES
dc.description.references Girosi, F., Poggio, T., 1990. Networks and the best approximation property. Biological Cybernetics 63, 169-176. https://doi.org/10.1007/BF00195855 es_ES
dc.description.references Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. International edition. Prentice Hall. es_ES
dc.description.references Hung, L.-C., Chung, H.-Y., 2007. Decoupled control using neural networkbased sliding-mode controller for nonlinear systems. Expert Syst. Appl. 32, 1168-1182. https://doi.org/10.1016/j.eswa.2006.02.024 es_ES
dc.description.references Khatri, K. C., 1984. Simulation of soil moisture migration from a point source. Ph.D. thesis. es_ES
dc.description.references Knox, J., Kay, M., Weatherhead, E., 2012. Water regulation, crop production, and agricultural water management understanding farmer perspectives on irrigation efficiency. Agricultural Water Management 108, 3-8, irrigation efficiency and productivity: scales, systems and science. https://doi.org/10.1016/j.agwat.2011.06.007 es_ES
dc.description.references Liao, Y., Fang, S.-C., Nuttle, H., 10 2003. Relaxed conditions for radial-basis function networks to be universal approximators. Neural networks : the official journal of the International Neural Network Society 16, 1019-28. DOI: 10.1016/S0893-6080(02)00227-7 https://doi.org/10.1016/S0893-6080(02)00227-7 es_ES
dc.description.references Lozoya, C., Mendoza, C., Mejía, L., Quintana, J., Mendoza, G., Bustillos, M., Arras, O., Solís, L., 2014. Model predictive control for closed-loop irrigation. IFAC Proceedings Volumes 47 (3), 4429 - 4434, 19th IFAC World Congress. https://doi.org/10.3182/20140824-6-ZA-1003.02067 es_ES
dc.description.references Park, J., Sandberg, I. W., mar 1993. Approximation and radial-basis-function networks. Neural Comput. 5 (2), 305-316. https://doi.org/10.1162/neco.1993.5.2.305 es_ES
dc.description.references Prado Hernández, J., Rivas, M., Lezama, A., Carrillo, M., Peña, V. M., Valenzuela, H., Paz, O., 10 2017. Modelo empírico del patrón de humedad en un suelo orgánico de méxico con riego por goteo superficial. es_ES
dc.description.references Pujolràs, G. A., 2006. Desarrollo y validación de un modelo de simulación de la dinámica del agua en el suelo. aplicación al diseño agronómico y al manejo en riego localizado. Ph.D. thesis. es_ES
dc.description.references Ramirez de Cartagena Bisbe, F., Sáinz Sánchez, M. A., 1997. Modelo de distribución de agua en suelo regado por goteo. Ingeniería del agua 4 (1). https://doi.org/10.4995/ia.1997.2716 es_ES
dc.description.references Rossomando, F., Soria, C., Carelli, R., 08 2012. Neural network-based com-pensation control of mobile robots with partially known structure. ControlTheory Applications, IET 6, 1851-1860.DOI:10.1049/iet-cta.2011.0581 https://doi.org/10.1049/iet-cta.2011.0581 es_ES
dc.description.references Rossomando, F., Soria, C., Carelli, R., 06 2014. Sliding mode neuro adaptivecontrol in trajectory tracking for mobile robots. Journal of Intelligent Ro-botic Systems 74. https://doi.org/10.1007/s10846-013-9843-5 es_ES
dc.description.references Sahbani, F., Ferjani, E., 06 2018. Identification and modelling of drop by drop irrigation system for tomato plants under greenhouse conditions. Irrigation and Drainage 67. https://doi.org/10.1002/ird.2253 es_ES
dc.description.references Simunek, J., Sejna, M., Van Genuchten, M., 2018. New features of version 3 of the hydrus (2d/3d) computer software package. Journal of Hydrology and Hydromechanics 66 (2), 133-142, cited By 4. https://doi.org/10.1515/johh-2017-0050 es_ES
dc.description.references Slotine, J., Slotine, J., Li, W., 1991. Applied Nonlinear Control. Prentice Hall. es_ES
dc.description.references Smith, R. J., Baillie, J. N., McCarthy, A. C., Raine, S. R., Baillie, C. P., 2010. Review of precision irrigation technologies and their application. Tech. rep. es_ES
dc.description.references Utkin, V. I., 1992. Sliding modes in optimization and control problems. Van der Ploeg, R., Benecke, P., 1974. Unsteady, unsaturated, n-dimensional moisture flow in soil: A computer simulation program. Proc Soil Sci Soc Am 38 (6), 881-885, cited By 21. https://doi.org/10.2136/sssaj1974.03615995003800060016x es_ES
dc.description.references Van der Ploeg, R., Benecke, P., 1974. Unsteady, unsaturated, n-dimensionalmoisture flow in soil: A computer simulation program. Proc Soil Sci SocAm 38 (6), 881-885, cited By 21. https://doi.org/10.2136/sssaj1974.03615995003800060016x es_ES
dc.description.references Van Yee, P., Haykin, S., 2001 - 2001. Regularized radial basis function networks : theory and applications / Paul Van Yee, Simon Haykin. Adaptive and learning systems for signal processing, communications, and control. John Wiley, New York. es_ES
dc.description.references Vita Serman, F., Capraro, F., Tosetti, S., Cornejo, V., Carelli, A., Ceci, L., 05 2012. Intelligent irrigation control in olive groves (olea europaea l.): A novel approach for water resource optimization. Acta Horticulturae 949. DOI: 10.17660/ActaHortic.2012.949.50 https://doi.org/10.17660/ActaHortic.2012.949.50 es_ES
dc.description.references Vrugt, J., Hopmans, J., Simunek, Jiri, J., 07 2001. Calibration of a twodimensional root water uptake model. Fluid Phase Equilibria 65, 1027- 1037. DOI: 10.2136/sssaj2001.6541027x https://doi.org/10.2136/sssaj2001.6541027x es_ES
dc.description.references Wray, J., Green, G. G., 1995. Neural networks, approximation theory, and finite precision computation. Neural Networks 8 (1), 31-37. https://doi.org/10.1016/0893-6080(94)00056-R es_ES
dc.description.references Yahyaoui, I., Tadeo, F., Segatto, M. V., 2017. Energy and water management for drip-irrigation of tomatoes in a semi-arid district. AgriculturalWater Management 183, 4 - 15, special Issue: Advances on ICTs for Water Management in Agriculture. https://doi.org/10.1016/j.agwat.2016.08.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem