- -

Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Luzuriaga, Paúl Nicolai es_ES
dc.contributor.author Reynoso-Meza, Gilberto es_ES
dc.date.accessioned 2023-01-17T08:41:10Z
dc.date.available 2023-01-17T08:41:10Z
dc.date.issued 2022-12-28
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/191369
dc.description.abstract [EN] PID Controllers remain as the reliable front-line solution in feedback control loops. Even when their simplicity is one of the main reasons for this, the right tuning of their parameters is essential to guarantee their performance. As consequence, several tuning methods are available. Nowadays performing a tuning process via stochastic optimisation is an attractive solution for complex processes. Nevertheless, the solution obtained using such optimisation methods is very sensitive to the hyper-parameters used. In this paper, we propose to designers a set of hyper-parameters for different algorithms based on Differential Evolution in SISO processes. Obtained results show several aspects to consider regarding the most promising values for several optimisation instances, facilitating knowledge transfer for new optimisation instances. es_ES
dc.description.abstract [ES] Los controladores PID se mantienen como una solución confiable de primera línea en sistemas de control retroalimentado. Incluso cuando su sencillez es una de las principales razones de ello, un correcto ajuste de sus parámetros es fundamental para garantizar un rendimiento satisfactorio. Como consecuencia, se encuentran disponibles varios métodos de ajuste. En la actualidad, realizar un proceso de ajuste mediante optimización estocástica es una solución atractiva para controlar procesos complejos. No obstante, la solución obtenida con estos métodos de optimización es muy sensible a los hiper-parámetros utilizados. En este artículo proponemos a los diseñadores un conjunto de hiper-parámetros para configurar diferentes algoritmos basados en Evolución Diferencial en sistemas de una entrada y una salida (SISO). Los resultados obtenidos muestran varios aspectos a considerar sobre los valores más prometedores para varias instancias de optimización facilitando la transferencia de conocimiento para nuevas instancias de optimización. es_ES
dc.description.sponsorship Trabajo financiado parcialmente por el Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), y la Fundação Araucária (FAPPR) - Brasil - proyectos 310079/2019-5-PQ2, 4408164/2021-2-Univ y PRONEX-51432/2018-PPP. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject PID tuning es_ES
dc.subject Evolutionary algorithms es_ES
dc.subject Hyper-parameters tuning es_ES
dc.subject Optimisation es_ES
dc.subject Ajuste de controladores PID es_ES
dc.subject Algoritmos evolutivos es_ES
dc.subject Ajuste de hiper-parámetros es_ES
dc.subject Optimización es_ES
dc.title Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO es_ES
dc.title.alternative Influence of hyper-parameters in algorithms based on Differential Evolution for the adjustment of PID-type controllers in SISO processes through mono and multi-objective optimisation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16517
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//310079/2019-5-PQ2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//4408164/2021-2-Univ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//PRONEX-51432/2018-PPP es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Martínez-Luzuriaga, PN.; Reynoso-Meza, G. (2022). Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO. Revista Iberoamericana de Automática e Informática industrial. 20(1):44-55. https://doi.org/10.4995/riai.2022.16517 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16517 es_ES
dc.description.upvformatpinicio 44 es_ES
dc.description.upvformatpfin 55 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16517 es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Fundação Araucária, Brasil es_ES
dc.description.references Alhanjouri, M., 2017. Modern Optimization Techniques for PID Parameters of Electrohydraulic Servo Control System. Int. J. Recent Innov. Trends Comput. Commun. 5 (March), 71-79. es_ES
dc.description.references Ang, K. H., Chong, G., Li, Y., 2005. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology 13 (4), 559- 576. https://doi.org/10.1109/TCST.2005.847331 es_ES
dc.description.references Åström, K. J., Hagglund, T., 1995. PID controllers: theory, design, and tuning. Vol. 2. ISA. es_ES
dc.description.references Åström, K. J., Hagglund, T., 2004. Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 14 (6), 635-650. https://doi.org/10.1016/j.jprocont.2004.01.002 es_ES
dc.description.references Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A., 2020. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 90 (October 2019). https://doi.org/10.1016/j.engappai.2020.103479 es_ES
dc.description.references Borase, R., Maghade, D., Sondkar, S., Pawar, S., 06 2021. A review of pid control, tuning methods and applications. International Journal of Dynamics and Control 9. https://doi.org/10.1007/s40435-020-00665-4 es_ES
dc.description.references Brest, J., Zumer, V., Mauˇcec, M. S., 2006. Self-adaptive differential evolution algorithm in constrained real-parameter optimization. 2006 IEEE Congr. Evol. Comput. CEC 2006, 215-222. es_ES
dc.description.references Calvo, B., Santafe, G., 2016. scmamp: Statistical comparison of multiple algorithms in multiple problems. R Journal 8 (1), 248-256. DOI: 10.32614/rj-2016-017 https://doi.org/10.32614/RJ-2016-017 es_ES
dc.description.references Chiha, I., Ghabi, J., Liouane, N., 05 2012. Tuning pid controller with multiobjective differential evolution. 5th International Symposium on Communications Control and Signal Processing, ISCCSP 2012. https://doi.org/10.1109/ISCCSP.2012.6217801 es_ES
dc.description.references Coello, C. A. C., Lamont, G. B., Veldhuizen, D. A. V., Goldberg, D. E., Koza, J. R., 2007. Evolutionary Algorithms for Solving Multi-Objective Problems. Springer. es_ES
dc.description.references Das, S., Suganthan, P. N., 2011. Differential evolution: A survey of the stateof- the-art. IEEE Trans. Evol. Comput. 15 (1), 4-31. https://doi.org/10.1109/TEVC.2010.2059031 es_ES
dc.description.references Dashti, M., Shojaee, K., Seyedkashi, S. M., Behnam, M., 2010. Tuning of digital PID controller using particle swarm optimization. Proc. 29th Chinese Control Conf. CCC'10, 3383-3389. es_ES
dc.description.references De Landgraaf, W. A., Eiben, A. E., Nannen, V., 2007. Parameter calibration using meta-algorithms. 2007 IEEE Congr. Evol. Comput. CEC 2007, 71- 78. https://doi.org/10.1109/CEC.2007.4424456 es_ES
dc.description.references Demsar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1-30. es_ES
dc.description.references Eiben, A. E., Michalewicz, Z., Schoenauer, M., Smith, J. E., 2007. Parameter control in evolutionary algorithms. Stud. Comput. Intell. 54 (2), 19-46. https://doi.org/10.1007/978-3-540-69432-8_2 es_ES
dc.description.references Fister, D., Fister, I., Fister, I., ˇ Safariˇc, R., 2016. Parameter tuning of PID controller with reactive nature-inspired algorithms. Rob. Auton. Syst. 84, 64-75. https://doi.org/10.1016/j.robot.2016.07.005 es_ES
dc.description.references Jaen-Cuellar, A. Y., Romero-Troncoso, R. D. J., Morales-Velazquez, L.,Osornio-Rios, R. A., 2013. PID-controller tuning optimization with genetic algorithms in servo systems. Int. J. Adv. Robot. Syst. 10. https://doi.org/10.5772/56697 es_ES
dc.description.references Konstantinov, S. V., Baryshnikov, A. A., 2017. Comparative Analysis of Evolutionary Algorithms for the Problem of Parametric Optimization of PID Controllers. Procedia Comput. Sci. 103 (October 2016), 100-107. https://doi.org/10.1016/j.procs.2017.01.021 es_ES
dc.description.references Kozak, S., 2014. State-of-the-art in control engineering. J. Electr. Syst. Inf. Technol. 1 (1), 1-9. es_ES
dc.description.references Lakshmi, K. V., Srinivas, P., Harshad, S., 2019. Differential Evolution Based PID Controller For Three Tank Level Process. International Journal of Engineering and advanced technology (IJEAT) 8 (4), 1274-1278. es_ES
dc.description.references Messac, A., 1996. Physical programming: Effective optimization for computational design. AIAA Journal 34 (1), 149-158. DOI: 10.2514/3.13035 https://doi.org/10.2514/3.13035 es_ES
dc.description.references Miettinen, K., 1998. Nonlinear Multiobjective Optimization. Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-5563-6 es_ES
dc.description.references Montero, E., Riff, M. C., Neveu, B., 2014. A beginner's guide to tuning methods. Appl. Soft Comput. J. 17, 39-51. https://doi.org/10.1016/j.asoc.2013.12.017 es_ES
dc.description.references Nannen, V., Eiben, A. E., 2007. Relevance estimation and value calibration of evolutionary algorithm parameters. IJCAI International Joint Conference on Artificial Intelligence, 975-980. https://doi.org/10.1109/CEC.2007.4424460 es_ES
dc.description.references Neumuller, C., Wagner, S., Kronberger, G., Affenzeller, M., 2012. Parameter meta-optimization of metaheuristic optimization algorithms. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6927 LNCS (PART 1), 367-374. https://doi.org/10.1007/978-3-642-27549-4_47 es_ES
dc.description.references Price, K. V., Storn, R. M., Lampinen, J. A., 2005. Differential evolution: a practical approach to global optimization. Natural computing series. Springer, Berlin ; New York. es_ES
dc.description.references Qin, A. K., Huang, V. L., Suganthan, P. N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13 (2), 398-417. DOI: 10.1109/TEVC.2008.927706 https://doi.org/10.1109/TEVC.2008.927706 es_ES
dc.description.references Qin, A. K., Suganthan, P. N., 2005. Self-adaptive differential evolution algorithm for numerical optimization. 2005 IEEE Congr. Evol. Comput. IEEE CEC 2005. Proc. 2, 1785-1791. es_ES
dc.description.references Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M., 2014a. Controller tuning using evolutionary multi-objective optimisation: Current trends and applications. Control Eng. Pract. 28 (1), 58-73. https://doi.org/10.1016/j.conengprac.2014.03.003 es_ES
dc.description.references Reynoso-Meza, G., Ferragud, X. B., Saez, J. S., Dura, J. M. H., 2017. Controller Tuning with Evolutionary Multiobjective Optimization: A Holistic Multiobjective Optimization Design Procedure. Vol. 85. Springer. https://doi.org/10.1007/978-3-319-41301-3 es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., Garc'ıa-Nieto, S., 2014b. Physical programming for preference driven evolutionary multi-objective optimization. Applied Soft Computing Journal 24, 341-362. DOI: 10.1016/j.asoc.2014.07.009 https://doi.org/10.1016/j.asoc.2014.07.009 es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2012. Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Syst. Appl. 39 (9), 7895-7907. https://doi.org/10.1016/j.eswa.2012.01.111 es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2014c. A stabilizing PID controller sampling procedure for stochastic optimizers. Vol. 19. IFAC. https://doi.org/10.3182/20140824-6-ZA-1003.00894 es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., Martínez, M., 2016. Preference driven multi-objective optimization design procedure for industrial controller tuning. Inf. Sci. (Ny). 339, 108-131. https://doi.org/10.1016/j.ins.2015.12.002 es_ES
dc.description.references Rodríguez-Molina, A., Mezura-Montes, E., Villarreal-Cervantes, M. G., Aldape-P'erez, M., 2020. Multi-objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem. Appl. Soft Comput. J. 93, 106342. https://doi.org/10.1016/j.asoc.2020.106342 es_ES
dc.description.references Saad, M. S., Jamaluddin, H., Darus, I. Z., 2012. PID controller tuning using evolutionary algorithms. WSEAS Trans. Syst. Control 7 (4), 139-149. es_ES
dc.description.references Sanchis, J., Martnez, M. A., Blasco, X., Reynoso-Meza, G., 2010. Modelling preferences in multi-objective engineering design. Engineering Applications of Artificial Intelligence 23 (8), 1255-1264. https://doi.org/10.1016/j.engappai.2010.07.005 es_ES
dc.description.references Singh, J., Singh, B., Joshi, N., 2017. Tuning Techniques of PID controller: A review. Int. J. Emerg. Technol. (Special Issue NCETST 8 (1), 481-485. es_ES
dc.description.references Smit, S. K., Eiben, A. E., 2010. Parameter tuning of evolutionary algorithms: Generalist vs. specialist. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6024 LNCS (PART 1), 542- 551. https://doi.org/10.1007/978-3-642-12239-2_56 es_ES
dc.description.references Smit, S. K., Eiben, A. E., Amsterdam, V. U., 2009. Comparing parameter tuning methods for evolutionary algorithms. In: 2009 IEEE Congress on Evolutionary Computation. pp. 399-406. https://doi.org/10.1109/CEC.2009.4982974 es_ES
dc.description.references Storn, R., Price, K., 1997. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 11 (4), 341-359. https://doi.org/10.1023/A:1008202821328 es_ES
dc.description.references Tan, N., Kaya, I., Yeroglu, C., Atherton, D. P., 2006. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Convers. Manag. 47 (18-19), 3045-3058. https://doi.org/10.1016/j.enconman.2006.03.022 es_ES
dc.description.references Tanabe, R., Fukunaga, A., 2015. Tuning differential evolution for cheap, medium, and expensive computational budgets. 2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc., 2018-2025. https://doi.org/10.1109/CEC.2015.7257133 es_ES
dc.description.references Ugolotti, R., Sani, L., Cagnoni, S., 2019. What can we learn from multiobjective meta-optimization of Evolutionary Algorithms in continuous domains? Mathematics 7 (3). https://doi.org/10.3390/math7030232 es_ES
dc.description.references Urrea-Quintero, J.-H., Hernández-Riveros, J.-A., Mu˜noz-Galeano, N., 2018. Optimum PI/PID Controllers Tuning via an Evolutionary Algorithm. PID Control for Industrial Processes. https://doi.org/10.5772/intechopen.74297 es_ES
dc.description.references Cervenka, M., Boudna, H., april 2018. Visual Guide on F and CR Parameters Influence on Differential Evolution Solution Quality. In: Engineering Mechanics 2018. pp. 234-238. es_ES
dc.description.references Vecek, N., Mernik, M., Filipicˇ, B., Cˇrepinsˇek, M., 2016. Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Inf. Sci. (Ny). 372, 446-469. https://doi.org/10.1016/j.ins.2016.08.066 es_ES
dc.description.references Wolpert, D. H., Macready, W. G., 1997. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1 (1), 67-82. https://doi.org/10.1109/4235.585893 es_ES
dc.description.references Ziegler, J. G., Nichols, N. B., 1993. Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control. Trans. ASME 115 (2B), 220-222. https://doi.org/10.1115/1.2899060 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem