Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Luzuriaga, Paúl Nicolai | es_ES |
dc.contributor.author | Reynoso-Meza, Gilberto | es_ES |
dc.date.accessioned | 2023-01-17T08:41:10Z | |
dc.date.available | 2023-01-17T08:41:10Z | |
dc.date.issued | 2022-12-28 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/191369 | |
dc.description.abstract | [EN] PID Controllers remain as the reliable front-line solution in feedback control loops. Even when their simplicity is one of the main reasons for this, the right tuning of their parameters is essential to guarantee their performance. As consequence, several tuning methods are available. Nowadays performing a tuning process via stochastic optimisation is an attractive solution for complex processes. Nevertheless, the solution obtained using such optimisation methods is very sensitive to the hyper-parameters used. In this paper, we propose to designers a set of hyper-parameters for different algorithms based on Differential Evolution in SISO processes. Obtained results show several aspects to consider regarding the most promising values for several optimisation instances, facilitating knowledge transfer for new optimisation instances. | es_ES |
dc.description.abstract | [ES] Los controladores PID se mantienen como una solución confiable de primera línea en sistemas de control retroalimentado. Incluso cuando su sencillez es una de las principales razones de ello, un correcto ajuste de sus parámetros es fundamental para garantizar un rendimiento satisfactorio. Como consecuencia, se encuentran disponibles varios métodos de ajuste. En la actualidad, realizar un proceso de ajuste mediante optimización estocástica es una solución atractiva para controlar procesos complejos. No obstante, la solución obtenida con estos métodos de optimización es muy sensible a los hiper-parámetros utilizados. En este artículo proponemos a los diseñadores un conjunto de hiper-parámetros para configurar diferentes algoritmos basados en Evolución Diferencial en sistemas de una entrada y una salida (SISO). Los resultados obtenidos muestran varios aspectos a considerar sobre los valores más prometedores para varias instancias de optimización facilitando la transferencia de conocimiento para nuevas instancias de optimización. | es_ES |
dc.description.sponsorship | Trabajo financiado parcialmente por el Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), y la Fundação Araucária (FAPPR) - Brasil - proyectos 310079/2019-5-PQ2, 4408164/2021-2-Univ y PRONEX-51432/2018-PPP. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | PID tuning | es_ES |
dc.subject | Evolutionary algorithms | es_ES |
dc.subject | Hyper-parameters tuning | es_ES |
dc.subject | Optimisation | es_ES |
dc.subject | Ajuste de controladores PID | es_ES |
dc.subject | Algoritmos evolutivos | es_ES |
dc.subject | Ajuste de hiper-parámetros | es_ES |
dc.subject | Optimización | es_ES |
dc.title | Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO | es_ES |
dc.title.alternative | Influence of hyper-parameters in algorithms based on Differential Evolution for the adjustment of PID-type controllers in SISO processes through mono and multi-objective optimisation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.16517 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//310079/2019-5-PQ2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//4408164/2021-2-Univ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//PRONEX-51432/2018-PPP | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Martínez-Luzuriaga, PN.; Reynoso-Meza, G. (2022). Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO. Revista Iberoamericana de Automática e Informática industrial. 20(1):44-55. https://doi.org/10.4995/riai.2022.16517 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.16517 | es_ES |
dc.description.upvformatpinicio | 44 | es_ES |
dc.description.upvformatpfin | 55 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\16517 | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.contributor.funder | Fundação Araucária, Brasil | es_ES |
dc.description.references | Alhanjouri, M., 2017. Modern Optimization Techniques for PID Parameters of Electrohydraulic Servo Control System. Int. J. Recent Innov. Trends Comput. Commun. 5 (March), 71-79. | es_ES |
dc.description.references | Ang, K. H., Chong, G., Li, Y., 2005. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology 13 (4), 559- 576. https://doi.org/10.1109/TCST.2005.847331 | es_ES |
dc.description.references | Åström, K. J., Hagglund, T., 1995. PID controllers: theory, design, and tuning. Vol. 2. ISA. | es_ES |
dc.description.references | Åström, K. J., Hagglund, T., 2004. Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 14 (6), 635-650. https://doi.org/10.1016/j.jprocont.2004.01.002 | es_ES |
dc.description.references | Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A., 2020. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 90 (October 2019). https://doi.org/10.1016/j.engappai.2020.103479 | es_ES |
dc.description.references | Borase, R., Maghade, D., Sondkar, S., Pawar, S., 06 2021. A review of pid control, tuning methods and applications. International Journal of Dynamics and Control 9. https://doi.org/10.1007/s40435-020-00665-4 | es_ES |
dc.description.references | Brest, J., Zumer, V., Mauˇcec, M. S., 2006. Self-adaptive differential evolution algorithm in constrained real-parameter optimization. 2006 IEEE Congr. Evol. Comput. CEC 2006, 215-222. | es_ES |
dc.description.references | Calvo, B., Santafe, G., 2016. scmamp: Statistical comparison of multiple algorithms in multiple problems. R Journal 8 (1), 248-256. DOI: 10.32614/rj-2016-017 https://doi.org/10.32614/RJ-2016-017 | es_ES |
dc.description.references | Chiha, I., Ghabi, J., Liouane, N., 05 2012. Tuning pid controller with multiobjective differential evolution. 5th International Symposium on Communications Control and Signal Processing, ISCCSP 2012. https://doi.org/10.1109/ISCCSP.2012.6217801 | es_ES |
dc.description.references | Coello, C. A. C., Lamont, G. B., Veldhuizen, D. A. V., Goldberg, D. E., Koza, J. R., 2007. Evolutionary Algorithms for Solving Multi-Objective Problems. Springer. | es_ES |
dc.description.references | Das, S., Suganthan, P. N., 2011. Differential evolution: A survey of the stateof- the-art. IEEE Trans. Evol. Comput. 15 (1), 4-31. https://doi.org/10.1109/TEVC.2010.2059031 | es_ES |
dc.description.references | Dashti, M., Shojaee, K., Seyedkashi, S. M., Behnam, M., 2010. Tuning of digital PID controller using particle swarm optimization. Proc. 29th Chinese Control Conf. CCC'10, 3383-3389. | es_ES |
dc.description.references | De Landgraaf, W. A., Eiben, A. E., Nannen, V., 2007. Parameter calibration using meta-algorithms. 2007 IEEE Congr. Evol. Comput. CEC 2007, 71- 78. https://doi.org/10.1109/CEC.2007.4424456 | es_ES |
dc.description.references | Demsar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1-30. | es_ES |
dc.description.references | Eiben, A. E., Michalewicz, Z., Schoenauer, M., Smith, J. E., 2007. Parameter control in evolutionary algorithms. Stud. Comput. Intell. 54 (2), 19-46. https://doi.org/10.1007/978-3-540-69432-8_2 | es_ES |
dc.description.references | Fister, D., Fister, I., Fister, I., ˇ Safariˇc, R., 2016. Parameter tuning of PID controller with reactive nature-inspired algorithms. Rob. Auton. Syst. 84, 64-75. https://doi.org/10.1016/j.robot.2016.07.005 | es_ES |
dc.description.references | Jaen-Cuellar, A. Y., Romero-Troncoso, R. D. J., Morales-Velazquez, L.,Osornio-Rios, R. A., 2013. PID-controller tuning optimization with genetic algorithms in servo systems. Int. J. Adv. Robot. Syst. 10. https://doi.org/10.5772/56697 | es_ES |
dc.description.references | Konstantinov, S. V., Baryshnikov, A. A., 2017. Comparative Analysis of Evolutionary Algorithms for the Problem of Parametric Optimization of PID Controllers. Procedia Comput. Sci. 103 (October 2016), 100-107. https://doi.org/10.1016/j.procs.2017.01.021 | es_ES |
dc.description.references | Kozak, S., 2014. State-of-the-art in control engineering. J. Electr. Syst. Inf. Technol. 1 (1), 1-9. | es_ES |
dc.description.references | Lakshmi, K. V., Srinivas, P., Harshad, S., 2019. Differential Evolution Based PID Controller For Three Tank Level Process. International Journal of Engineering and advanced technology (IJEAT) 8 (4), 1274-1278. | es_ES |
dc.description.references | Messac, A., 1996. Physical programming: Effective optimization for computational design. AIAA Journal 34 (1), 149-158. DOI: 10.2514/3.13035 https://doi.org/10.2514/3.13035 | es_ES |
dc.description.references | Miettinen, K., 1998. Nonlinear Multiobjective Optimization. Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-5563-6 | es_ES |
dc.description.references | Montero, E., Riff, M. C., Neveu, B., 2014. A beginner's guide to tuning methods. Appl. Soft Comput. J. 17, 39-51. https://doi.org/10.1016/j.asoc.2013.12.017 | es_ES |
dc.description.references | Nannen, V., Eiben, A. E., 2007. Relevance estimation and value calibration of evolutionary algorithm parameters. IJCAI International Joint Conference on Artificial Intelligence, 975-980. https://doi.org/10.1109/CEC.2007.4424460 | es_ES |
dc.description.references | Neumuller, C., Wagner, S., Kronberger, G., Affenzeller, M., 2012. Parameter meta-optimization of metaheuristic optimization algorithms. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6927 LNCS (PART 1), 367-374. https://doi.org/10.1007/978-3-642-27549-4_47 | es_ES |
dc.description.references | Price, K. V., Storn, R. M., Lampinen, J. A., 2005. Differential evolution: a practical approach to global optimization. Natural computing series. Springer, Berlin ; New York. | es_ES |
dc.description.references | Qin, A. K., Huang, V. L., Suganthan, P. N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13 (2), 398-417. DOI: 10.1109/TEVC.2008.927706 https://doi.org/10.1109/TEVC.2008.927706 | es_ES |
dc.description.references | Qin, A. K., Suganthan, P. N., 2005. Self-adaptive differential evolution algorithm for numerical optimization. 2005 IEEE Congr. Evol. Comput. IEEE CEC 2005. Proc. 2, 1785-1791. | es_ES |
dc.description.references | Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M., 2014a. Controller tuning using evolutionary multi-objective optimisation: Current trends and applications. Control Eng. Pract. 28 (1), 58-73. https://doi.org/10.1016/j.conengprac.2014.03.003 | es_ES |
dc.description.references | Reynoso-Meza, G., Ferragud, X. B., Saez, J. S., Dura, J. M. H., 2017. Controller Tuning with Evolutionary Multiobjective Optimization: A Holistic Multiobjective Optimization Design Procedure. Vol. 85. Springer. https://doi.org/10.1007/978-3-319-41301-3 | es_ES |
dc.description.references | Reynoso-Meza, G., Sanchis, J., Blasco, X., Garc'ıa-Nieto, S., 2014b. Physical programming for preference driven evolutionary multi-objective optimization. Applied Soft Computing Journal 24, 341-362. DOI: 10.1016/j.asoc.2014.07.009 https://doi.org/10.1016/j.asoc.2014.07.009 | es_ES |
dc.description.references | Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2012. Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Syst. Appl. 39 (9), 7895-7907. https://doi.org/10.1016/j.eswa.2012.01.111 | es_ES |
dc.description.references | Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2014c. A stabilizing PID controller sampling procedure for stochastic optimizers. Vol. 19. IFAC. https://doi.org/10.3182/20140824-6-ZA-1003.00894 | es_ES |
dc.description.references | Reynoso-Meza, G., Sanchis, J., Blasco, X., Martínez, M., 2016. Preference driven multi-objective optimization design procedure for industrial controller tuning. Inf. Sci. (Ny). 339, 108-131. https://doi.org/10.1016/j.ins.2015.12.002 | es_ES |
dc.description.references | Rodríguez-Molina, A., Mezura-Montes, E., Villarreal-Cervantes, M. G., Aldape-P'erez, M., 2020. Multi-objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem. Appl. Soft Comput. J. 93, 106342. https://doi.org/10.1016/j.asoc.2020.106342 | es_ES |
dc.description.references | Saad, M. S., Jamaluddin, H., Darus, I. Z., 2012. PID controller tuning using evolutionary algorithms. WSEAS Trans. Syst. Control 7 (4), 139-149. | es_ES |
dc.description.references | Sanchis, J., Martnez, M. A., Blasco, X., Reynoso-Meza, G., 2010. Modelling preferences in multi-objective engineering design. Engineering Applications of Artificial Intelligence 23 (8), 1255-1264. https://doi.org/10.1016/j.engappai.2010.07.005 | es_ES |
dc.description.references | Singh, J., Singh, B., Joshi, N., 2017. Tuning Techniques of PID controller: A review. Int. J. Emerg. Technol. (Special Issue NCETST 8 (1), 481-485. | es_ES |
dc.description.references | Smit, S. K., Eiben, A. E., 2010. Parameter tuning of evolutionary algorithms: Generalist vs. specialist. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6024 LNCS (PART 1), 542- 551. https://doi.org/10.1007/978-3-642-12239-2_56 | es_ES |
dc.description.references | Smit, S. K., Eiben, A. E., Amsterdam, V. U., 2009. Comparing parameter tuning methods for evolutionary algorithms. In: 2009 IEEE Congress on Evolutionary Computation. pp. 399-406. https://doi.org/10.1109/CEC.2009.4982974 | es_ES |
dc.description.references | Storn, R., Price, K., 1997. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 11 (4), 341-359. https://doi.org/10.1023/A:1008202821328 | es_ES |
dc.description.references | Tan, N., Kaya, I., Yeroglu, C., Atherton, D. P., 2006. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Convers. Manag. 47 (18-19), 3045-3058. https://doi.org/10.1016/j.enconman.2006.03.022 | es_ES |
dc.description.references | Tanabe, R., Fukunaga, A., 2015. Tuning differential evolution for cheap, medium, and expensive computational budgets. 2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc., 2018-2025. https://doi.org/10.1109/CEC.2015.7257133 | es_ES |
dc.description.references | Ugolotti, R., Sani, L., Cagnoni, S., 2019. What can we learn from multiobjective meta-optimization of Evolutionary Algorithms in continuous domains? Mathematics 7 (3). https://doi.org/10.3390/math7030232 | es_ES |
dc.description.references | Urrea-Quintero, J.-H., Hernández-Riveros, J.-A., Mu˜noz-Galeano, N., 2018. Optimum PI/PID Controllers Tuning via an Evolutionary Algorithm. PID Control for Industrial Processes. https://doi.org/10.5772/intechopen.74297 | es_ES |
dc.description.references | Cervenka, M., Boudna, H., april 2018. Visual Guide on F and CR Parameters Influence on Differential Evolution Solution Quality. In: Engineering Mechanics 2018. pp. 234-238. | es_ES |
dc.description.references | Vecek, N., Mernik, M., Filipicˇ, B., Cˇrepinsˇek, M., 2016. Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Inf. Sci. (Ny). 372, 446-469. https://doi.org/10.1016/j.ins.2016.08.066 | es_ES |
dc.description.references | Wolpert, D. H., Macready, W. G., 1997. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1 (1), 67-82. https://doi.org/10.1109/4235.585893 | es_ES |
dc.description.references | Ziegler, J. G., Nichols, N. B., 1993. Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control. Trans. ASME 115 (2B), 220-222. https://doi.org/10.1115/1.2899060 | es_ES |