- -

Hybrid topologies on the real line

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid topologies on the real line

Mostrar el registro completo del ítem

Richmond, T. (2023). Hybrid topologies on the real line. Applied General Topology. 24(1):157-168. https://doi.org/10.4995/agt.2023.18566

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193024

Ficheros en el ítem

Metadatos del ítem

Título: Hybrid topologies on the real line
Autor: Richmond, Tom
Fecha difusión:
Resumen:
[EN] Given A ⊆ R, the Hattori space H(A) is the topological space (R, τA) where each a ∈ A has a τA-neighborhood base {(a−ε, a+ε) : ε > 0} and each b ∈ R − A has a τA-neighborhood base {[b, b + ε) : ε > 0}. Thus, τA may ...[+]
Palabras clave: Hybrid topology , Hattori topology , Quasi-metric
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.18566
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.18566
Tipo: Artículo

References

A. Bouziad and E. Sukhacheva, On Hattori spaces, Comment. Math. Univ. Carolin. 58, no. 2 (2017), 213-223. https://doi.org/10.14712/1213-7243.2015.199

V. A. Chatyrko and Y. Hattori, A poset of topologies on the set of real numbers, Comment. Math. Univ. Carolin. 54, no. 2 (2013), 189-196.

Y. Hattori, Order and topological structures of posets of the formal balls on metric spaces, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science 43 (2010), 13-26. [+]
A. Bouziad and E. Sukhacheva, On Hattori spaces, Comment. Math. Univ. Carolin. 58, no. 2 (2017), 213-223. https://doi.org/10.14712/1213-7243.2015.199

V. A. Chatyrko and Y. Hattori, A poset of topologies on the set of real numbers, Comment. Math. Univ. Carolin. 54, no. 2 (2013), 189-196.

Y. Hattori, Order and topological structures of posets of the formal balls on metric spaces, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science 43 (2010), 13-26.

D. J. Lutzer, Ordered topological spaces, Surveys in general topology, pp. 247-295, Academic Press, New York-London-Toronto, Ont., 1980. https://doi.org/10.1016/B978-0-12-584960-9.50014-6

T. Richmond, General Topology: An Introduction, De Gruyter, Berlin, 2020. https://doi.org/10.1515/9783110686579

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem