Akkawutvanich, C., & Manoonpong, P. (2023). Personalized Symmetrical and Asymmetrical Gait Generation of a Lower-limb Exoskeleton. IEEE Transactions on Industrial Informatics, XX(X), 1-12. https://doi.org/10.1109/TII.2023.3234619
Baud, R., Manzoori, A. R., Ijspeert, A., & Bouri, M. (2021). Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 18(1), 1-34. https://doi.org/10.1186/s12984-021-00906-3
Bayon, C., Ramirez, O., Del Castillo, M. D., Serrano, J. I., Raya, R., Belda-Lois, J. M., Poveda, R., Molla, F., Martin, T., Martinez, I., Lerma Lara, S., & Rocon, E. (2016). CPWalker: Robotic platform for gait rehabilitation in patients with Cerebral Palsy. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 3736-3741. https://doi.org/10.1109/ICRA.2016.7487561
[+]
Akkawutvanich, C., & Manoonpong, P. (2023). Personalized Symmetrical and Asymmetrical Gait Generation of a Lower-limb Exoskeleton. IEEE Transactions on Industrial Informatics, XX(X), 1-12. https://doi.org/10.1109/TII.2023.3234619
Baud, R., Manzoori, A. R., Ijspeert, A., & Bouri, M. (2021). Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 18(1), 1-34. https://doi.org/10.1186/s12984-021-00906-3
Bayon, C., Ramirez, O., Del Castillo, M. D., Serrano, J. I., Raya, R., Belda-Lois, J. M., Poveda, R., Molla, F., Martin, T., Martinez, I., Lerma Lara, S., & Rocon, E. (2016). CPWalker: Robotic platform for gait rehabilitation in patients with Cerebral Palsy. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 3736-3741. https://doi.org/10.1109/ICRA.2016.7487561
Bishop, T., & Karne, R. (2003). A survey of middleware. Proceedings of the ISCA 18th International Conference Computers and Their Applications, Honolulu, Hawaii, USA, March 26-28, 2003, 254-258. http://triton.towson.edu/~karne/research/middlew/surveym.pdf
Blaya, J. A., & Herr, H. (2004). Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24-31. https://doi.org/10.1109/TNSRE.2003.823266
Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study Wearable robotics in clinical testing. Journal of NeuroEngineering and Rehabilitation, 12(1), 1-14. https://doi.org/10.1186/s12984-015-0048-y
Chen, J., Hochstein, J., Kim, C., Tucker, L., Hammel, L. E., Damiano, D. L., & Bulea, T. C. (2021). A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy. Frontiers in Robotics and AI, 8(June), 1-16. https://doi.org/10.3389/frobt.2021.702137
Danner, S. M., Hofstoetter, U. S., Freundl, B., Binder, H., Mayr, W., Rattay, F., & Minassian, K. (2015). Human spinal locomotor control is based on flexibly organized burst generators. Brain : A Journal of Neurology, 138(Pt 3), 577-588. https://doi.org/10.1093/brain/awu372
Del Castillo, M. D., Serrano, J. I., Lerma, S., Martínez, I., & Rocon, E. (2018). Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral. Revista Iberoamericana de Automática e Informática Industrial, 15(2), 174-179. https://doi.org/10.4995/riai.2017.8819
DH, S. (1994). Kinematics of normal human walking. Human Walking. https://cir.nii.ac.jp/crid/1570572700224225152
Dicks, H. (2016). The Philosophy of Biomimicry. Philosophy and Technology, 29(3), 223-243. https://doi.org/10.1007/s13347-015-0210-2
Dietz, V. (2002). Proprioception and locomotor disorders. Nature Reviews. Neuroscience, 3(10), 781-790. https://doi.org/10.1038/nrn939
Eguren, D., Cestari, M., Luu, T. P., Kilicarslan, A., Steele, A., & Contreras-Vidal, J. L. (2019). Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2019-Octob, 2411-2416. https://doi.org/10.1109/SMC.2019.8914629
Elbarrany, W. G., & Altaf, F. M. (2017). The Tibial Nerve and Its Vasculature: An Anatomical Evaluation. International Journal of Morphology, 35(3), 812-819. https://doi.org/10.4067/S0717-95022017000300004
Frigon, A., & Rossignol, S. (2006). Experiments and models of sensorimotor interactions during locomotion. Biological Cybernetics, 95(6), 607-627. https://doi.org/10.1007/s00422-006-0129-x
Graham Brown, B. T. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(572), 308-319. https://doi.org/10.1098/rspb.1911.0077
Kawamoto, H., Hayashi, T., Sakurai, T., Eguchi, K., & Sankai, Y. (2009). Development of single leg version of HAL for hemiplegia. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 5038-5043. https://doi.org/10.1109/IEMBS.2009.5333698
Kosinski, R. J. (2010). A Literature Review on Reaction Time. Retrieved HttpbiaeclemsonedubpcbpLab110reactionhtm 06042010, 10(August), 2006. http://biology.clemson.edu/bpc/bp/Lab/110/reaction.htm
Laubscher, C. A., Farris, R. J., & Sawicki, J. T. (2017). Design and preliminary evaluation of a powered pediatric lower limb orthosis. Proceedings of the ASME Design Engineering Technical Conference, 5A-2017, 1-9. https://doi.org/10.1115/DETC2017-67599
Lerma Lara, S., del Castillo, M. D., Serrano, J. I., Rocón, E., Raya, R., & Martínez Caballero, I. (2015). EEG control of gait in children with cerebral palsy. Preliminary data for the construction of a brain computer interface. Gait & Posture, 42, S42. https://doi.org/10.1016/j.gaitpost.2015.06.082
Lerner, Z. F., Damiano, D. L., & Bulea, T. C. (2017). A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Science Translational Medicine, 9(404). https://doi.org/10.1126/scitranslmed.aam9145
Letz, R., & Gerr, F. (1994). Covariates of human peripheral nerve function: I. Nerve conduction velocity and amplitude. Neurotoxicology and Teratology, 16(1), 95-104. https://doi.org/10.1016/0892-0362(94)90014-0
Loeb, G. E. (2008). Neural Control of Locomotion H o w d o all the data fit together ? Animals, 39(11), 800-804. https://doi.org/10.2307/1311186
Lora-Millan, J. S., Moreno, J. C., & Rocon, E. (2022). Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies. Frontiers in Bioengineering and Biotechnology, 10, 819. https://doi.org/10.3389/fbioe.2022.842294
Mayag, L. J. A., Múnera, M., & Cifuentes, C. A. (2022). Human-in-the-Loop Control for AGoRA Unilateral Lower-Limb Exoskeleton. Journal of Intelligent and Robotic Systems: Theory and Applications, 104(1). https://doi.org/10.1007/s10846-021-01487-y
Meijneke, C., Van Oort, G., Sluiter, V., Van Asseldonk, E., Tagliamonte, N. L., Tamburella, F., Pisotta, I., Masciullo, M., Arquilla, M., Molinari, M., Wu, A. R., Dzeladini, F., Ijspeert, A. J., & Van Der Kooij, H. (2021). Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 330-339. https://doi.org/10.1109/TNSRE.2021.3049960
Meuleman, J., Van Asseldonk, E., Van Oort, G., Rietman, H., & Van Der Kooij, H. (2016). LOPES II - Design and Evaluation of an Admittance Controlled Gait Training Robot with Shadow-Leg Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(3), 352-363. https://doi.org/10.1109/TNSRE.2015.2511448
Minassian, K., Hofstoetter, U. S., Dzeladini, F., Guertin, P. A., & Ijspeert, A. (2017). The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking? Neuroscientist, 23(6), 649-663. https://doi.org/10.1177/1073858417699790
Mohd Adib, M. A. H., Han, S. Y., Ramani, P. R., You, L. J., Yan, L. M., Mat Sahat, I., & Mohd Hasni, N. H. (2019). Restoration of Kids Leg Function Using Exoskeleton Robotic Leg (ExRoLEG) Device. Lecture Notes in Electrical Engineering, 538, 335-342. https://doi.org/10.1007/978-981-13-3708-6_28
Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S. Y., Ali, M. K., AlMazroa, M. A., Alvarado, M., Anderson, H. R., … Lopez, A. D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England), 380(9859), 2197-2223. https://doi.org/10.1016/S0140-6736(12)61689-4
Palomino-Díaz, V., & … P. R.-S.-X. S. C. (n.d.). DISEÑO CONCEPTUAL DE UNA PLATAFORMA ROBÓTICA PARA AYUDAR A QUE LOS NIÑOS CON PARÁLISIS CEREBRAL DESCUBRAN CÓMO. Burjcdigital.Urjc.Es. Retrieved November 4, 2022, from https://burjcdigital.urjc.es/bitstream/handle/10115/17868/Actas_V2 %281%29.pdf?sequence=3&isAllowed=y#page=84
Patané, F., Rossi, S., Del Sette, F., Taborri, J., & Cappa, P. (2017). WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 906-916. https://doi.org/10.1109/TNSRE.2017.2651404
Patel, A. V., Hildebrand, J. S., Leach, C. R., Campbell, P. T., Doyle, C., Shuval, K., Wang, Y., & Gapstur, S. M. (2018). Walking in Relation to Mortality in a Large Prospective Cohort of Older U.S. Adults. American Journal of Preventive Medicine, 54(1), 10-19. https://doi.org/10.1016/j.amepre.2017.08.019
Pathak, S. (2019). Biomimicry: (Innovation Inspired by Nature). International Journal of New Technology and Research, 5(6). https://doi.org/10.31871/IJNTR.5.6.17
PHEASANT, S. T. (2007). A Review of: "Human Walking". By V. T. INMAN, H.J. RALSTON and F. TODD. (Baltimore, London: Williams & Wilkins, 1981.) [Pp.154.]. Http://Dx.Doi.Org/10.1080/00140138108924919, 24(12), 969-976. https://doi.org/10.1080/00140138108924919
Pons, J. (2008). Wearable robots: biomechatronic exoskeletons. https://doi.org/10.1002/9780470987667
Pratt, J. E., Krupp, B. T., Morse, C. J., & Collins, S. H. (2004). The RoboKnee: An exoskeleton for enhancing strength and endurance during walking. Proceedings - IEEE International Conference on Robotics and Automation, 2004(3), 2430-2435. https://doi.org/10.1109/ROBOT.2004.1307425
Prochazka, A., Gritsenko, V., & Yakovenko, S. (2002). Sensory control of locomotion: reflexes versus higher-level control. Advances in Experimental Medicine and Biology, 508, 357-367. https://doi.org/10.1007/978-1-4615-0713-0_41
Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A. (n.d.). ROS: an open-source Robot Operating System. Retrieved October 20, 2022, from http://stair.stanford.edu
Rocon, E., & Pons, J. L. (2011). Exoskeletons in Rehabilitation Robotics. 69. https://doi.org/10.1007/978-3-642-17659-3
Sanz-merodio, D., Sancho, J., & Erez, M. P. (2020). of the Atlas 2020 Lower-Limb Active Orthosis. 860-868. https://doi.org/10.1142/9789813149137_0100
Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. The Journal of Physiology, 40(1-2), 28-121. https://doi.org/10.1113/jphysiol.1910.sp001362
Shi, D., Zhang, W., Zhang, W., & Ding, X. (2019). A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering (English Edition), 32(1), 1-11. https://doi.org/10.1186/s10033-019-0389-8
Sorozabal, P., Delgado-Oleas, G., Gutiérrez, Á., & Rocon, E. (2022). Generador de patrones de marcha tridimensionales dependientes de la velocidad para el control de exoesqueletos. XLIII Jornadas de Automática: Libro de Actas: 7, 8 y 9 de Septiembre de 2022, Logroño (La Rioja), 128-133. https://doi.org/10.17979/spudc.9788497498418.0128
Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., Del Millán, J. R., Riener, R., Vallery, H., & Gassert, R. (2015). Control strategies for active lower extremity prosthetics and orthotics: A review. Journal of NeuroEngineering and Rehabilitation, 12(1). https://doi.org/10.1186/1743-0003-12-1
Van De Crommert, H. W. A. A., Mulder, T., & Duysens, J. (1998). Neural control of locomotion: Sensory control of the central pattern generator and its relation to treadmill training. Gait and Posture, 7(3), 251-263. https://doi.org/10.1016/S0966-6362(98)00010-1
Varol, H. A., Sup, F., & Goldfarb, M. (2010). Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Transactions on Biomedical Engineering, 57(3), 542-551. https://doi.org/10.1109/TBME.2009.2034734
Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16(3-4), 273-288. https://doi.org/10.1016/0160-2896(92)90010-O
Wang, S., Meijneke, C., & Van Der Kooij, H. (2013). Modeling, design, and optimization of Mindwalker series elastic joint. IEEE International Conference on Rehabilitation Robotics, June. https://doi.org/10.1109/ICORR.2013.6650381
Woods, D. L., Wyma, J. M., Yund, E. W., Herron, T. J., & Reed, B. (2015). Factors influencing the latency of simple reaction time. Frontiers in Human Neuroscience, 9(MAR), 1-12. https://doi.org/10.3389/fnhum.2015.00131
[-]