- -

Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción

Mostrar el registro completo del ítem

Delgado-Oleas, G.; Romero-Sorozabal, P.; Lora-Millan, J.; Gutierrez, A.; Rocon, E. (2023). Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción. Revista Iberoamericana de Automática e Informática industrial. 20(3):293-302. https://doi.org/10.4995/riai.2023.18748

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194757

Ficheros en el ítem

Metadatos del ítem

Título: Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción
Otro titulo: Design and development of a bioinspired electronic architecture for the control of locomotion assistance systems
Autor: Delgado-Oleas, Gabriel Romero-Sorozabal, Pablo Lora-Millan, Julio Gutierrez, Alvaro Rocon, Eduardo
Fecha difusión:
Resumen:
[EN] This article presents the design and development of a bio-inspired electronic architecture based on the human motor system for locomotion assistance systems, as in the case of assistive or rehabilitation exoskeletons. ...[+]


[ES] Este artículo presenta el diseño y desarrollo de una arquitectura electrónica bioinspirada en el sistema motor humano para sistemas de asistencia a la locomoción, como es en el caso de exoesqueletos de asistencia o ...[+]
Palabras clave: Biomimicry , Architecture , Exoskeletons , Human gait , ROS , Lower-limb , Biomimetismo , Arquitectura , Exoesqueletos , Marcha humana , Miembro-inferior
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.18748
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2023.18748
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105110RB-C31/ES/DESARROLLO DE UNA PLATAFORMA ROBOTICA PARA AYUDAR A NIÑOS CON PARALISIS CEREBRAL A DESCUBRIR COMO CAMINAR/
Agradecimientos:
Este trabajo ha sido realizado en el marco del proyecto Discover2Walk “Desarrollo de una plataforma robótica para ayudar a niños con Parálisis Cerebral a descubrir cómo caminar”, referencia PID2019-105110RB-C31, financiado ...[+]
Tipo: Artículo

References

Akkawutvanich, C., & Manoonpong, P. (2023). Personalized Symmetrical and Asymmetrical Gait Generation of a Lower-limb Exoskeleton. IEEE Transactions on Industrial Informatics, XX(X), 1-12. https://doi.org/10.1109/TII.2023.3234619

Baud, R., Manzoori, A. R., Ijspeert, A., & Bouri, M. (2021). Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 18(1), 1-34. https://doi.org/10.1186/s12984-021-00906-3

Bayon, C., Ramirez, O., Del Castillo, M. D., Serrano, J. I., Raya, R., Belda-Lois, J. M., Poveda, R., Molla, F., Martin, T., Martinez, I., Lerma Lara, S., & Rocon, E. (2016). CPWalker: Robotic platform for gait rehabilitation in patients with Cerebral Palsy. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 3736-3741. https://doi.org/10.1109/ICRA.2016.7487561 [+]
Akkawutvanich, C., & Manoonpong, P. (2023). Personalized Symmetrical and Asymmetrical Gait Generation of a Lower-limb Exoskeleton. IEEE Transactions on Industrial Informatics, XX(X), 1-12. https://doi.org/10.1109/TII.2023.3234619

Baud, R., Manzoori, A. R., Ijspeert, A., & Bouri, M. (2021). Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 18(1), 1-34. https://doi.org/10.1186/s12984-021-00906-3

Bayon, C., Ramirez, O., Del Castillo, M. D., Serrano, J. I., Raya, R., Belda-Lois, J. M., Poveda, R., Molla, F., Martin, T., Martinez, I., Lerma Lara, S., & Rocon, E. (2016). CPWalker: Robotic platform for gait rehabilitation in patients with Cerebral Palsy. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 3736-3741. https://doi.org/10.1109/ICRA.2016.7487561

Bishop, T., & Karne, R. (2003). A survey of middleware. Proceedings of the ISCA 18th International Conference Computers and Their Applications, Honolulu, Hawaii, USA, March 26-28, 2003, 254-258. http://triton.towson.edu/~karne/research/middlew/surveym.pdf

Blaya, J. A., & Herr, H. (2004). Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24-31. https://doi.org/10.1109/TNSRE.2003.823266

Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study Wearable robotics in clinical testing. Journal of NeuroEngineering and Rehabilitation, 12(1), 1-14. https://doi.org/10.1186/s12984-015-0048-y

Chen, J., Hochstein, J., Kim, C., Tucker, L., Hammel, L. E., Damiano, D. L., & Bulea, T. C. (2021). A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy. Frontiers in Robotics and AI, 8(June), 1-16. https://doi.org/10.3389/frobt.2021.702137

Danner, S. M., Hofstoetter, U. S., Freundl, B., Binder, H., Mayr, W., Rattay, F., & Minassian, K. (2015). Human spinal locomotor control is based on flexibly organized burst generators. Brain : A Journal of Neurology, 138(Pt 3), 577-588. https://doi.org/10.1093/brain/awu372

Del Castillo, M. D., Serrano, J. I., Lerma, S., Martínez, I., & Rocon, E. (2018). Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral. Revista Iberoamericana de Automática e Informática Industrial, 15(2), 174-179. https://doi.org/10.4995/riai.2017.8819

DH, S. (1994). Kinematics of normal human walking. Human Walking. https://cir.nii.ac.jp/crid/1570572700224225152

Dicks, H. (2016). The Philosophy of Biomimicry. Philosophy and Technology, 29(3), 223-243. https://doi.org/10.1007/s13347-015-0210-2

Dietz, V. (2002). Proprioception and locomotor disorders. Nature Reviews. Neuroscience, 3(10), 781-790. https://doi.org/10.1038/nrn939

Eguren, D., Cestari, M., Luu, T. P., Kilicarslan, A., Steele, A., & Contreras-Vidal, J. L. (2019). Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2019-Octob, 2411-2416. https://doi.org/10.1109/SMC.2019.8914629

Elbarrany, W. G., & Altaf, F. M. (2017). The Tibial Nerve and Its Vasculature: An Anatomical Evaluation. International Journal of Morphology, 35(3), 812-819. https://doi.org/10.4067/S0717-95022017000300004

Frigon, A., & Rossignol, S. (2006). Experiments and models of sensorimotor interactions during locomotion. Biological Cybernetics, 95(6), 607-627. https://doi.org/10.1007/s00422-006-0129-x

Graham Brown, B. T. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(572), 308-319. https://doi.org/10.1098/rspb.1911.0077

Kawamoto, H., Hayashi, T., Sakurai, T., Eguchi, K., & Sankai, Y. (2009). Development of single leg version of HAL for hemiplegia. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 5038-5043. https://doi.org/10.1109/IEMBS.2009.5333698

Kosinski, R. J. (2010). A Literature Review on Reaction Time. Retrieved HttpbiaeclemsonedubpcbpLab110reactionhtm 06042010, 10(August), 2006. http://biology.clemson.edu/bpc/bp/Lab/110/reaction.htm

Laubscher, C. A., Farris, R. J., & Sawicki, J. T. (2017). Design and preliminary evaluation of a powered pediatric lower limb orthosis. Proceedings of the ASME Design Engineering Technical Conference, 5A-2017, 1-9. https://doi.org/10.1115/DETC2017-67599

Lerma Lara, S., del Castillo, M. D., Serrano, J. I., Rocón, E., Raya, R., & Martínez Caballero, I. (2015). EEG control of gait in children with cerebral palsy. Preliminary data for the construction of a brain computer interface. Gait & Posture, 42, S42. https://doi.org/10.1016/j.gaitpost.2015.06.082

Lerner, Z. F., Damiano, D. L., & Bulea, T. C. (2017). A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Science Translational Medicine, 9(404). https://doi.org/10.1126/scitranslmed.aam9145

Letz, R., & Gerr, F. (1994). Covariates of human peripheral nerve function: I. Nerve conduction velocity and amplitude. Neurotoxicology and Teratology, 16(1), 95-104. https://doi.org/10.1016/0892-0362(94)90014-0

Loeb, G. E. (2008). Neural Control of Locomotion H o w d o all the data fit together ? Animals, 39(11), 800-804. https://doi.org/10.2307/1311186

Lora-Millan, J. S., Moreno, J. C., & Rocon, E. (2022). Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies. Frontiers in Bioengineering and Biotechnology, 10, 819. https://doi.org/10.3389/fbioe.2022.842294

Mayag, L. J. A., Múnera, M., & Cifuentes, C. A. (2022). Human-in-the-Loop Control for AGoRA Unilateral Lower-Limb Exoskeleton. Journal of Intelligent and Robotic Systems: Theory and Applications, 104(1). https://doi.org/10.1007/s10846-021-01487-y

Meijneke, C., Van Oort, G., Sluiter, V., Van Asseldonk, E., Tagliamonte, N. L., Tamburella, F., Pisotta, I., Masciullo, M., Arquilla, M., Molinari, M., Wu, A. R., Dzeladini, F., Ijspeert, A. J., & Van Der Kooij, H. (2021). Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 330-339. https://doi.org/10.1109/TNSRE.2021.3049960

Meuleman, J., Van Asseldonk, E., Van Oort, G., Rietman, H., & Van Der Kooij, H. (2016). LOPES II - Design and Evaluation of an Admittance Controlled Gait Training Robot with Shadow-Leg Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(3), 352-363. https://doi.org/10.1109/TNSRE.2015.2511448

Minassian, K., Hofstoetter, U. S., Dzeladini, F., Guertin, P. A., & Ijspeert, A. (2017). The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking? Neuroscientist, 23(6), 649-663. https://doi.org/10.1177/1073858417699790

Mohd Adib, M. A. H., Han, S. Y., Ramani, P. R., You, L. J., Yan, L. M., Mat Sahat, I., & Mohd Hasni, N. H. (2019). Restoration of Kids Leg Function Using Exoskeleton Robotic Leg (ExRoLEG) Device. Lecture Notes in Electrical Engineering, 538, 335-342. https://doi.org/10.1007/978-981-13-3708-6_28

Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S. Y., Ali, M. K., AlMazroa, M. A., Alvarado, M., Anderson, H. R., … Lopez, A. D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England), 380(9859), 2197-2223. https://doi.org/10.1016/S0140-6736(12)61689-4

Palomino-Díaz, V., & … P. R.-S.-X. S. C. (n.d.). DISEÑO CONCEPTUAL DE UNA PLATAFORMA ROBÓTICA PARA AYUDAR A QUE LOS NIÑOS CON PARÁLISIS CEREBRAL DESCUBRAN CÓMO. Burjcdigital.Urjc.Es. Retrieved November 4, 2022, from https://burjcdigital.urjc.es/bitstream/handle/10115/17868/Actas_V2 %281%29.pdf?sequence=3&isAllowed=y#page=84

Patané, F., Rossi, S., Del Sette, F., Taborri, J., & Cappa, P. (2017). WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 906-916. https://doi.org/10.1109/TNSRE.2017.2651404

Patel, A. V., Hildebrand, J. S., Leach, C. R., Campbell, P. T., Doyle, C., Shuval, K., Wang, Y., & Gapstur, S. M. (2018). Walking in Relation to Mortality in a Large Prospective Cohort of Older U.S. Adults. American Journal of Preventive Medicine, 54(1), 10-19. https://doi.org/10.1016/j.amepre.2017.08.019

Pathak, S. (2019). Biomimicry: (Innovation Inspired by Nature). International Journal of New Technology and Research, 5(6). https://doi.org/10.31871/IJNTR.5.6.17

PHEASANT, S. T. (2007). A Review of: "Human Walking". By V. T. INMAN, H.J. RALSTON and F. TODD. (Baltimore, London: Williams & Wilkins, 1981.) [Pp.154.]. Http://Dx.Doi.Org/10.1080/00140138108924919, 24(12), 969-976. https://doi.org/10.1080/00140138108924919

Pons, J. (2008). Wearable robots: biomechatronic exoskeletons. https://doi.org/10.1002/9780470987667

Pratt, J. E., Krupp, B. T., Morse, C. J., & Collins, S. H. (2004). The RoboKnee: An exoskeleton for enhancing strength and endurance during walking. Proceedings - IEEE International Conference on Robotics and Automation, 2004(3), 2430-2435. https://doi.org/10.1109/ROBOT.2004.1307425

Prochazka, A., Gritsenko, V., & Yakovenko, S. (2002). Sensory control of locomotion: reflexes versus higher-level control. Advances in Experimental Medicine and Biology, 508, 357-367. https://doi.org/10.1007/978-1-4615-0713-0_41

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A. (n.d.). ROS: an open-source Robot Operating System. Retrieved October 20, 2022, from http://stair.stanford.edu

Rocon, E., & Pons, J. L. (2011). Exoskeletons in Rehabilitation Robotics. 69. https://doi.org/10.1007/978-3-642-17659-3

Sanz-merodio, D., Sancho, J., & Erez, M. P. (2020). of the Atlas 2020 Lower-Limb Active Orthosis. 860-868. https://doi.org/10.1142/9789813149137_0100

Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. The Journal of Physiology, 40(1-2), 28-121. https://doi.org/10.1113/jphysiol.1910.sp001362

Shi, D., Zhang, W., Zhang, W., & Ding, X. (2019). A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering (English Edition), 32(1), 1-11. https://doi.org/10.1186/s10033-019-0389-8

Sorozabal, P., Delgado-Oleas, G., Gutiérrez, Á., & Rocon, E. (2022). Generador de patrones de marcha tridimensionales dependientes de la velocidad para el control de exoesqueletos. XLIII Jornadas de Automática: Libro de Actas: 7, 8 y 9 de Septiembre de 2022, Logroño (La Rioja), 128-133. https://doi.org/10.17979/spudc.9788497498418.0128

Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., Del Millán, J. R., Riener, R., Vallery, H., & Gassert, R. (2015). Control strategies for active lower extremity prosthetics and orthotics: A review. Journal of NeuroEngineering and Rehabilitation, 12(1). https://doi.org/10.1186/1743-0003-12-1

Van De Crommert, H. W. A. A., Mulder, T., & Duysens, J. (1998). Neural control of locomotion: Sensory control of the central pattern generator and its relation to treadmill training. Gait and Posture, 7(3), 251-263. https://doi.org/10.1016/S0966-6362(98)00010-1

Varol, H. A., Sup, F., & Goldfarb, M. (2010). Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Transactions on Biomedical Engineering, 57(3), 542-551. https://doi.org/10.1109/TBME.2009.2034734

Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16(3-4), 273-288. https://doi.org/10.1016/0160-2896(92)90010-O

Wang, S., Meijneke, C., & Van Der Kooij, H. (2013). Modeling, design, and optimization of Mindwalker series elastic joint. IEEE International Conference on Rehabilitation Robotics, June. https://doi.org/10.1109/ICORR.2013.6650381

Woods, D. L., Wyma, J. M., Yund, E. W., Herron, T. J., & Reed, B. (2015). Factors influencing the latency of simple reaction time. Frontiers in Human Neuroscience, 9(MAR), 1-12. https://doi.org/10.3389/fnhum.2015.00131

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem