- -

Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delgado-Oleas, Gabriel es_ES
dc.contributor.author Romero-Sorozabal, Pablo es_ES
dc.contributor.author Lora-Millan, Julio es_ES
dc.contributor.author Gutierrez, Alvaro es_ES
dc.contributor.author Rocon, Eduardo es_ES
dc.date.accessioned 2023-07-10T12:21:14Z
dc.date.available 2023-07-10T12:21:14Z
dc.date.issued 2023-04-25
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/194757
dc.description.abstract [EN] This article presents the design and development of a bio-inspired electronic architecture based on the human motor system for locomotion assistance systems, as in the case of assistive or rehabilitation exoskeletons. The proposed architecture is divided into three hierarchical levels and implemented in ROS2, facilitating modularity and parallelism in the execution and operation of the system. The proposal has been implemented in an exoskeleton prototype called Discover2Walk. The results show that the proposal can be applied to both exoskeleton applications for rehabilitation and assistance. This architecture offers greater modularity, improved compatibility with programming languages, scalability, interoperability with other robotics and automation systems, support for distributed applications, and ease of monitoring and control. The presented control architecture may be adopted in future robotic platforms and exoskeletons, improving motor control of gait and offering more personalized therapies. es_ES
dc.description.abstract [ES] Este artículo presenta el diseño y desarrollo de una arquitectura electrónica bioinspirada en el sistema motor humano para sistemas de asistencia a la locomoción, como es en el caso de exoesqueletos de asistencia o de rehabilitación. La arquitectura propuesta se divide en tres niveles jerárquicos y se implementa en ROS2, facilitando la modularidad y el paralelismo en la ejecución y funcionamiento del sistema. La propuesta ha sido implementada en un prototipo de exoesqueleto denominado Discover2Walk. Los resultados obtenidos muestran que la propuesta puede aplicarse a ambos tipos de aplicación de exoesqueletos, tanto para rehabilitación como para asistencia. Entre las ventajas que ofrece esta arquitectura, destacan una mayor modularidad, la mejora de la compatibilidad con lenguajes de programación, la escalabilidad, la interoperabilidad con otros sistemas de robótica y automatización, el soporte para aplicaciones distribuidas y la facilidad de supervisión y control. La arquitectura de control que se presenta puede llegar a ser adoptada en futuras plataformas robóticas y exoesqueletos, mejorando el control motor de la marcha y ofreciendo terapias más personalizadas. es_ES
dc.description.sponsorship Este trabajo ha sido realizado en el marco del proyecto Discover2Walk “Desarrollo de una plataforma robótica para ayudar a niños con Parálisis Cerebral a descubrir cómo caminar”, referencia PID2019-105110RB-C31, financiado por el Ministerio de Ciencia e Innovación. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Biomimicry es_ES
dc.subject Architecture es_ES
dc.subject Exoskeletons es_ES
dc.subject Human gait es_ES
dc.subject ROS es_ES
dc.subject Lower-limb es_ES
dc.subject Biomimetismo es_ES
dc.subject Arquitectura es_ES
dc.subject Exoesqueletos es_ES
dc.subject Marcha humana es_ES
dc.subject Miembro-inferior es_ES
dc.title Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción es_ES
dc.title.alternative Design and development of a bioinspired electronic architecture for the control of locomotion assistance systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.18748
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105110RB-C31/ES/DESARROLLO DE UNA PLATAFORMA ROBOTICA PARA AYUDAR A NIÑOS CON PARALISIS CEREBRAL A DESCUBRIR COMO CAMINAR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Delgado-Oleas, G.; Romero-Sorozabal, P.; Lora-Millan, J.; Gutierrez, A.; Rocon, E. (2023). Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción. Revista Iberoamericana de Automática e Informática industrial. 20(3):293-302. https://doi.org/10.4995/riai.2023.18748 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.18748 es_ES
dc.description.upvformatpinicio 293 es_ES
dc.description.upvformatpfin 302 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\18748 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Akkawutvanich, C., & Manoonpong, P. (2023). Personalized Symmetrical and Asymmetrical Gait Generation of a Lower-limb Exoskeleton. IEEE Transactions on Industrial Informatics, XX(X), 1-12. https://doi.org/10.1109/TII.2023.3234619 es_ES
dc.description.references Baud, R., Manzoori, A. R., Ijspeert, A., & Bouri, M. (2021). Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 18(1), 1-34. https://doi.org/10.1186/s12984-021-00906-3 es_ES
dc.description.references Bayon, C., Ramirez, O., Del Castillo, M. D., Serrano, J. I., Raya, R., Belda-Lois, J. M., Poveda, R., Molla, F., Martin, T., Martinez, I., Lerma Lara, S., & Rocon, E. (2016). CPWalker: Robotic platform for gait rehabilitation in patients with Cerebral Palsy. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 3736-3741. https://doi.org/10.1109/ICRA.2016.7487561 es_ES
dc.description.references Bishop, T., & Karne, R. (2003). A survey of middleware. Proceedings of the ISCA 18th International Conference Computers and Their Applications, Honolulu, Hawaii, USA, March 26-28, 2003, 254-258. http://triton.towson.edu/~karne/research/middlew/surveym.pdf es_ES
dc.description.references Blaya, J. A., & Herr, H. (2004). Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24-31. https://doi.org/10.1109/TNSRE.2003.823266 es_ES
dc.description.references Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study Wearable robotics in clinical testing. Journal of NeuroEngineering and Rehabilitation, 12(1), 1-14. https://doi.org/10.1186/s12984-015-0048-y es_ES
dc.description.references Chen, J., Hochstein, J., Kim, C., Tucker, L., Hammel, L. E., Damiano, D. L., & Bulea, T. C. (2021). A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy. Frontiers in Robotics and AI, 8(June), 1-16. https://doi.org/10.3389/frobt.2021.702137 es_ES
dc.description.references Danner, S. M., Hofstoetter, U. S., Freundl, B., Binder, H., Mayr, W., Rattay, F., & Minassian, K. (2015). Human spinal locomotor control is based on flexibly organized burst generators. Brain : A Journal of Neurology, 138(Pt 3), 577-588. https://doi.org/10.1093/brain/awu372 es_ES
dc.description.references Del Castillo, M. D., Serrano, J. I., Lerma, S., Martínez, I., & Rocon, E. (2018). Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral. Revista Iberoamericana de Automática e Informática Industrial, 15(2), 174-179. https://doi.org/10.4995/riai.2017.8819 es_ES
dc.description.references DH, S. (1994). Kinematics of normal human walking. Human Walking. https://cir.nii.ac.jp/crid/1570572700224225152 es_ES
dc.description.references Dicks, H. (2016). The Philosophy of Biomimicry. Philosophy and Technology, 29(3), 223-243. https://doi.org/10.1007/s13347-015-0210-2 es_ES
dc.description.references Dietz, V. (2002). Proprioception and locomotor disorders. Nature Reviews. Neuroscience, 3(10), 781-790. https://doi.org/10.1038/nrn939 es_ES
dc.description.references Eguren, D., Cestari, M., Luu, T. P., Kilicarslan, A., Steele, A., & Contreras-Vidal, J. L. (2019). Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2019-Octob, 2411-2416. https://doi.org/10.1109/SMC.2019.8914629 es_ES
dc.description.references Elbarrany, W. G., & Altaf, F. M. (2017). The Tibial Nerve and Its Vasculature: An Anatomical Evaluation. International Journal of Morphology, 35(3), 812-819. https://doi.org/10.4067/S0717-95022017000300004 es_ES
dc.description.references Frigon, A., & Rossignol, S. (2006). Experiments and models of sensorimotor interactions during locomotion. Biological Cybernetics, 95(6), 607-627. https://doi.org/10.1007/s00422-006-0129-x es_ES
dc.description.references Graham Brown, B. T. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(572), 308-319. https://doi.org/10.1098/rspb.1911.0077 es_ES
dc.description.references Kawamoto, H., Hayashi, T., Sakurai, T., Eguchi, K., & Sankai, Y. (2009). Development of single leg version of HAL for hemiplegia. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 5038-5043. https://doi.org/10.1109/IEMBS.2009.5333698 es_ES
dc.description.references Kosinski, R. J. (2010). A Literature Review on Reaction Time. Retrieved HttpbiaeclemsonedubpcbpLab110reactionhtm 06042010, 10(August), 2006. http://biology.clemson.edu/bpc/bp/Lab/110/reaction.htm es_ES
dc.description.references Laubscher, C. A., Farris, R. J., & Sawicki, J. T. (2017). Design and preliminary evaluation of a powered pediatric lower limb orthosis. Proceedings of the ASME Design Engineering Technical Conference, 5A-2017, 1-9. https://doi.org/10.1115/DETC2017-67599 es_ES
dc.description.references Lerma Lara, S., del Castillo, M. D., Serrano, J. I., Rocón, E., Raya, R., & Martínez Caballero, I. (2015). EEG control of gait in children with cerebral palsy. Preliminary data for the construction of a brain computer interface. Gait & Posture, 42, S42. https://doi.org/10.1016/j.gaitpost.2015.06.082 es_ES
dc.description.references Lerner, Z. F., Damiano, D. L., & Bulea, T. C. (2017). A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Science Translational Medicine, 9(404). https://doi.org/10.1126/scitranslmed.aam9145 es_ES
dc.description.references Letz, R., & Gerr, F. (1994). Covariates of human peripheral nerve function: I. Nerve conduction velocity and amplitude. Neurotoxicology and Teratology, 16(1), 95-104. https://doi.org/10.1016/0892-0362(94)90014-0 es_ES
dc.description.references Loeb, G. E. (2008). Neural Control of Locomotion H o w d o all the data fit together ? Animals, 39(11), 800-804. https://doi.org/10.2307/1311186 es_ES
dc.description.references Lora-Millan, J. S., Moreno, J. C., & Rocon, E. (2022). Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies. Frontiers in Bioengineering and Biotechnology, 10, 819. https://doi.org/10.3389/fbioe.2022.842294 es_ES
dc.description.references Mayag, L. J. A., Múnera, M., & Cifuentes, C. A. (2022). Human-in-the-Loop Control for AGoRA Unilateral Lower-Limb Exoskeleton. Journal of Intelligent and Robotic Systems: Theory and Applications, 104(1). https://doi.org/10.1007/s10846-021-01487-y es_ES
dc.description.references Meijneke, C., Van Oort, G., Sluiter, V., Van Asseldonk, E., Tagliamonte, N. L., Tamburella, F., Pisotta, I., Masciullo, M., Arquilla, M., Molinari, M., Wu, A. R., Dzeladini, F., Ijspeert, A. J., & Van Der Kooij, H. (2021). Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 330-339. https://doi.org/10.1109/TNSRE.2021.3049960 es_ES
dc.description.references Meuleman, J., Van Asseldonk, E., Van Oort, G., Rietman, H., & Van Der Kooij, H. (2016). LOPES II - Design and Evaluation of an Admittance Controlled Gait Training Robot with Shadow-Leg Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(3), 352-363. https://doi.org/10.1109/TNSRE.2015.2511448 es_ES
dc.description.references Minassian, K., Hofstoetter, U. S., Dzeladini, F., Guertin, P. A., & Ijspeert, A. (2017). The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking? Neuroscientist, 23(6), 649-663. https://doi.org/10.1177/1073858417699790 es_ES
dc.description.references Mohd Adib, M. A. H., Han, S. Y., Ramani, P. R., You, L. J., Yan, L. M., Mat Sahat, I., & Mohd Hasni, N. H. (2019). Restoration of Kids Leg Function Using Exoskeleton Robotic Leg (ExRoLEG) Device. Lecture Notes in Electrical Engineering, 538, 335-342. https://doi.org/10.1007/978-981-13-3708-6_28 es_ES
dc.description.references Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S. Y., Ali, M. K., AlMazroa, M. A., Alvarado, M., Anderson, H. R., … Lopez, A. D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England), 380(9859), 2197-2223. https://doi.org/10.1016/S0140-6736(12)61689-4 es_ES
dc.description.references Palomino-Díaz, V., & … P. R.-S.-X. S. C. (n.d.). DISEÑO CONCEPTUAL DE UNA PLATAFORMA ROBÓTICA PARA AYUDAR A QUE LOS NIÑOS CON PARÁLISIS CEREBRAL DESCUBRAN CÓMO. Burjcdigital.Urjc.Es. Retrieved November 4, 2022, from https://burjcdigital.urjc.es/bitstream/handle/10115/17868/Actas_V2 %281%29.pdf?sequence=3&isAllowed=y#page=84 es_ES
dc.description.references Patané, F., Rossi, S., Del Sette, F., Taborri, J., & Cappa, P. (2017). WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 906-916. https://doi.org/10.1109/TNSRE.2017.2651404 es_ES
dc.description.references Patel, A. V., Hildebrand, J. S., Leach, C. R., Campbell, P. T., Doyle, C., Shuval, K., Wang, Y., & Gapstur, S. M. (2018). Walking in Relation to Mortality in a Large Prospective Cohort of Older U.S. Adults. American Journal of Preventive Medicine, 54(1), 10-19. https://doi.org/10.1016/j.amepre.2017.08.019 es_ES
dc.description.references Pathak, S. (2019). Biomimicry: (Innovation Inspired by Nature). International Journal of New Technology and Research, 5(6). https://doi.org/10.31871/IJNTR.5.6.17 es_ES
dc.description.references PHEASANT, S. T. (2007). A Review of: "Human Walking". By V. T. INMAN, H.J. RALSTON and F. TODD. (Baltimore, London: Williams & Wilkins, 1981.) [Pp.154.]. Http://Dx.Doi.Org/10.1080/00140138108924919, 24(12), 969-976. https://doi.org/10.1080/00140138108924919 es_ES
dc.description.references Pons, J. (2008). Wearable robots: biomechatronic exoskeletons. https://doi.org/10.1002/9780470987667 es_ES
dc.description.references Pratt, J. E., Krupp, B. T., Morse, C. J., & Collins, S. H. (2004). The RoboKnee: An exoskeleton for enhancing strength and endurance during walking. Proceedings - IEEE International Conference on Robotics and Automation, 2004(3), 2430-2435. https://doi.org/10.1109/ROBOT.2004.1307425 es_ES
dc.description.references Prochazka, A., Gritsenko, V., & Yakovenko, S. (2002). Sensory control of locomotion: reflexes versus higher-level control. Advances in Experimental Medicine and Biology, 508, 357-367. https://doi.org/10.1007/978-1-4615-0713-0_41 es_ES
dc.description.references Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A. (n.d.). ROS: an open-source Robot Operating System. Retrieved October 20, 2022, from http://stair.stanford.edu es_ES
dc.description.references Rocon, E., & Pons, J. L. (2011). Exoskeletons in Rehabilitation Robotics. 69. https://doi.org/10.1007/978-3-642-17659-3 es_ES
dc.description.references Sanz-merodio, D., Sancho, J., & Erez, M. P. (2020). of the Atlas 2020 Lower-Limb Active Orthosis. 860-868. https://doi.org/10.1142/9789813149137_0100 es_ES
dc.description.references Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. The Journal of Physiology, 40(1-2), 28-121. https://doi.org/10.1113/jphysiol.1910.sp001362 es_ES
dc.description.references Shi, D., Zhang, W., Zhang, W., & Ding, X. (2019). A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering (English Edition), 32(1), 1-11. https://doi.org/10.1186/s10033-019-0389-8 es_ES
dc.description.references Sorozabal, P., Delgado-Oleas, G., Gutiérrez, Á., & Rocon, E. (2022). Generador de patrones de marcha tridimensionales dependientes de la velocidad para el control de exoesqueletos. XLIII Jornadas de Automática: Libro de Actas: 7, 8 y 9 de Septiembre de 2022, Logroño (La Rioja), 128-133. https://doi.org/10.17979/spudc.9788497498418.0128 es_ES
dc.description.references Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., Del Millán, J. R., Riener, R., Vallery, H., & Gassert, R. (2015). Control strategies for active lower extremity prosthetics and orthotics: A review. Journal of NeuroEngineering and Rehabilitation, 12(1). https://doi.org/10.1186/1743-0003-12-1 es_ES
dc.description.references Van De Crommert, H. W. A. A., Mulder, T., & Duysens, J. (1998). Neural control of locomotion: Sensory control of the central pattern generator and its relation to treadmill training. Gait and Posture, 7(3), 251-263. https://doi.org/10.1016/S0966-6362(98)00010-1 es_ES
dc.description.references Varol, H. A., Sup, F., & Goldfarb, M. (2010). Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Transactions on Biomedical Engineering, 57(3), 542-551. https://doi.org/10.1109/TBME.2009.2034734 es_ES
dc.description.references Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16(3-4), 273-288. https://doi.org/10.1016/0160-2896(92)90010-O es_ES
dc.description.references Wang, S., Meijneke, C., & Van Der Kooij, H. (2013). Modeling, design, and optimization of Mindwalker series elastic joint. IEEE International Conference on Rehabilitation Robotics, June. https://doi.org/10.1109/ICORR.2013.6650381 es_ES
dc.description.references Woods, D. L., Wyma, J. M., Yund, E. W., Herron, T. J., & Reed, B. (2015). Factors influencing the latency of simple reaction time. Frontiers in Human Neuroscience, 9(MAR), 1-12. https://doi.org/10.3389/fnhum.2015.00131 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem