Mostrar el registro sencillo del ítem
dc.contributor.author | Delgado-Oleas, Gabriel | es_ES |
dc.contributor.author | Romero-Sorozabal, Pablo | es_ES |
dc.contributor.author | Lora-Millan, Julio | es_ES |
dc.contributor.author | Gutierrez, Alvaro | es_ES |
dc.contributor.author | Rocon, Eduardo | es_ES |
dc.date.accessioned | 2023-07-10T12:21:14Z | |
dc.date.available | 2023-07-10T12:21:14Z | |
dc.date.issued | 2023-04-25 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/194757 | |
dc.description.abstract | [EN] This article presents the design and development of a bio-inspired electronic architecture based on the human motor system for locomotion assistance systems, as in the case of assistive or rehabilitation exoskeletons. The proposed architecture is divided into three hierarchical levels and implemented in ROS2, facilitating modularity and parallelism in the execution and operation of the system. The proposal has been implemented in an exoskeleton prototype called Discover2Walk. The results show that the proposal can be applied to both exoskeleton applications for rehabilitation and assistance. This architecture offers greater modularity, improved compatibility with programming languages, scalability, interoperability with other robotics and automation systems, support for distributed applications, and ease of monitoring and control. The presented control architecture may be adopted in future robotic platforms and exoskeletons, improving motor control of gait and offering more personalized therapies. | es_ES |
dc.description.abstract | [ES] Este artículo presenta el diseño y desarrollo de una arquitectura electrónica bioinspirada en el sistema motor humano para sistemas de asistencia a la locomoción, como es en el caso de exoesqueletos de asistencia o de rehabilitación. La arquitectura propuesta se divide en tres niveles jerárquicos y se implementa en ROS2, facilitando la modularidad y el paralelismo en la ejecución y funcionamiento del sistema. La propuesta ha sido implementada en un prototipo de exoesqueleto denominado Discover2Walk. Los resultados obtenidos muestran que la propuesta puede aplicarse a ambos tipos de aplicación de exoesqueletos, tanto para rehabilitación como para asistencia. Entre las ventajas que ofrece esta arquitectura, destacan una mayor modularidad, la mejora de la compatibilidad con lenguajes de programación, la escalabilidad, la interoperabilidad con otros sistemas de robótica y automatización, el soporte para aplicaciones distribuidas y la facilidad de supervisión y control. La arquitectura de control que se presenta puede llegar a ser adoptada en futuras plataformas robóticas y exoesqueletos, mejorando el control motor de la marcha y ofreciendo terapias más personalizadas. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado en el marco del proyecto Discover2Walk “Desarrollo de una plataforma robótica para ayudar a niños con Parálisis Cerebral a descubrir cómo caminar”, referencia PID2019-105110RB-C31, financiado por el Ministerio de Ciencia e Innovación. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Biomimicry | es_ES |
dc.subject | Architecture | es_ES |
dc.subject | Exoskeletons | es_ES |
dc.subject | Human gait | es_ES |
dc.subject | ROS | es_ES |
dc.subject | Lower-limb | es_ES |
dc.subject | Biomimetismo | es_ES |
dc.subject | Arquitectura | es_ES |
dc.subject | Exoesqueletos | es_ES |
dc.subject | Marcha humana | es_ES |
dc.subject | Miembro-inferior | es_ES |
dc.title | Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción | es_ES |
dc.title.alternative | Design and development of a bioinspired electronic architecture for the control of locomotion assistance systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2023.18748 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105110RB-C31/ES/DESARROLLO DE UNA PLATAFORMA ROBOTICA PARA AYUDAR A NIÑOS CON PARALISIS CEREBRAL A DESCUBRIR COMO CAMINAR/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Delgado-Oleas, G.; Romero-Sorozabal, P.; Lora-Millan, J.; Gutierrez, A.; Rocon, E. (2023). Diseño y desarrollo de una arquitectura electrónica bioinspirada para el control de sistemas de asistencia a la locomoción. Revista Iberoamericana de Automática e Informática industrial. 20(3):293-302. https://doi.org/10.4995/riai.2023.18748 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2023.18748 | es_ES |
dc.description.upvformatpinicio | 293 | es_ES |
dc.description.upvformatpfin | 302 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\18748 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Akkawutvanich, C., & Manoonpong, P. (2023). Personalized Symmetrical and Asymmetrical Gait Generation of a Lower-limb Exoskeleton. IEEE Transactions on Industrial Informatics, XX(X), 1-12. https://doi.org/10.1109/TII.2023.3234619 | es_ES |
dc.description.references | Baud, R., Manzoori, A. R., Ijspeert, A., & Bouri, M. (2021). Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 18(1), 1-34. https://doi.org/10.1186/s12984-021-00906-3 | es_ES |
dc.description.references | Bayon, C., Ramirez, O., Del Castillo, M. D., Serrano, J. I., Raya, R., Belda-Lois, J. M., Poveda, R., Molla, F., Martin, T., Martinez, I., Lerma Lara, S., & Rocon, E. (2016). CPWalker: Robotic platform for gait rehabilitation in patients with Cerebral Palsy. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 3736-3741. https://doi.org/10.1109/ICRA.2016.7487561 | es_ES |
dc.description.references | Bishop, T., & Karne, R. (2003). A survey of middleware. Proceedings of the ISCA 18th International Conference Computers and Their Applications, Honolulu, Hawaii, USA, March 26-28, 2003, 254-258. http://triton.towson.edu/~karne/research/middlew/surveym.pdf | es_ES |
dc.description.references | Blaya, J. A., & Herr, H. (2004). Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24-31. https://doi.org/10.1109/TNSRE.2003.823266 | es_ES |
dc.description.references | Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study Wearable robotics in clinical testing. Journal of NeuroEngineering and Rehabilitation, 12(1), 1-14. https://doi.org/10.1186/s12984-015-0048-y | es_ES |
dc.description.references | Chen, J., Hochstein, J., Kim, C., Tucker, L., Hammel, L. E., Damiano, D. L., & Bulea, T. C. (2021). A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy. Frontiers in Robotics and AI, 8(June), 1-16. https://doi.org/10.3389/frobt.2021.702137 | es_ES |
dc.description.references | Danner, S. M., Hofstoetter, U. S., Freundl, B., Binder, H., Mayr, W., Rattay, F., & Minassian, K. (2015). Human spinal locomotor control is based on flexibly organized burst generators. Brain : A Journal of Neurology, 138(Pt 3), 577-588. https://doi.org/10.1093/brain/awu372 | es_ES |
dc.description.references | Del Castillo, M. D., Serrano, J. I., Lerma, S., Martínez, I., & Rocon, E. (2018). Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral. Revista Iberoamericana de Automática e Informática Industrial, 15(2), 174-179. https://doi.org/10.4995/riai.2017.8819 | es_ES |
dc.description.references | DH, S. (1994). Kinematics of normal human walking. Human Walking. https://cir.nii.ac.jp/crid/1570572700224225152 | es_ES |
dc.description.references | Dicks, H. (2016). The Philosophy of Biomimicry. Philosophy and Technology, 29(3), 223-243. https://doi.org/10.1007/s13347-015-0210-2 | es_ES |
dc.description.references | Dietz, V. (2002). Proprioception and locomotor disorders. Nature Reviews. Neuroscience, 3(10), 781-790. https://doi.org/10.1038/nrn939 | es_ES |
dc.description.references | Eguren, D., Cestari, M., Luu, T. P., Kilicarslan, A., Steele, A., & Contreras-Vidal, J. L. (2019). Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2019-Octob, 2411-2416. https://doi.org/10.1109/SMC.2019.8914629 | es_ES |
dc.description.references | Elbarrany, W. G., & Altaf, F. M. (2017). The Tibial Nerve and Its Vasculature: An Anatomical Evaluation. International Journal of Morphology, 35(3), 812-819. https://doi.org/10.4067/S0717-95022017000300004 | es_ES |
dc.description.references | Frigon, A., & Rossignol, S. (2006). Experiments and models of sensorimotor interactions during locomotion. Biological Cybernetics, 95(6), 607-627. https://doi.org/10.1007/s00422-006-0129-x | es_ES |
dc.description.references | Graham Brown, B. T. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(572), 308-319. https://doi.org/10.1098/rspb.1911.0077 | es_ES |
dc.description.references | Kawamoto, H., Hayashi, T., Sakurai, T., Eguchi, K., & Sankai, Y. (2009). Development of single leg version of HAL for hemiplegia. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 5038-5043. https://doi.org/10.1109/IEMBS.2009.5333698 | es_ES |
dc.description.references | Kosinski, R. J. (2010). A Literature Review on Reaction Time. Retrieved HttpbiaeclemsonedubpcbpLab110reactionhtm 06042010, 10(August), 2006. http://biology.clemson.edu/bpc/bp/Lab/110/reaction.htm | es_ES |
dc.description.references | Laubscher, C. A., Farris, R. J., & Sawicki, J. T. (2017). Design and preliminary evaluation of a powered pediatric lower limb orthosis. Proceedings of the ASME Design Engineering Technical Conference, 5A-2017, 1-9. https://doi.org/10.1115/DETC2017-67599 | es_ES |
dc.description.references | Lerma Lara, S., del Castillo, M. D., Serrano, J. I., Rocón, E., Raya, R., & Martínez Caballero, I. (2015). EEG control of gait in children with cerebral palsy. Preliminary data for the construction of a brain computer interface. Gait & Posture, 42, S42. https://doi.org/10.1016/j.gaitpost.2015.06.082 | es_ES |
dc.description.references | Lerner, Z. F., Damiano, D. L., & Bulea, T. C. (2017). A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Science Translational Medicine, 9(404). https://doi.org/10.1126/scitranslmed.aam9145 | es_ES |
dc.description.references | Letz, R., & Gerr, F. (1994). Covariates of human peripheral nerve function: I. Nerve conduction velocity and amplitude. Neurotoxicology and Teratology, 16(1), 95-104. https://doi.org/10.1016/0892-0362(94)90014-0 | es_ES |
dc.description.references | Loeb, G. E. (2008). Neural Control of Locomotion H o w d o all the data fit together ? Animals, 39(11), 800-804. https://doi.org/10.2307/1311186 | es_ES |
dc.description.references | Lora-Millan, J. S., Moreno, J. C., & Rocon, E. (2022). Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies. Frontiers in Bioengineering and Biotechnology, 10, 819. https://doi.org/10.3389/fbioe.2022.842294 | es_ES |
dc.description.references | Mayag, L. J. A., Múnera, M., & Cifuentes, C. A. (2022). Human-in-the-Loop Control for AGoRA Unilateral Lower-Limb Exoskeleton. Journal of Intelligent and Robotic Systems: Theory and Applications, 104(1). https://doi.org/10.1007/s10846-021-01487-y | es_ES |
dc.description.references | Meijneke, C., Van Oort, G., Sluiter, V., Van Asseldonk, E., Tagliamonte, N. L., Tamburella, F., Pisotta, I., Masciullo, M., Arquilla, M., Molinari, M., Wu, A. R., Dzeladini, F., Ijspeert, A. J., & Van Der Kooij, H. (2021). Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 330-339. https://doi.org/10.1109/TNSRE.2021.3049960 | es_ES |
dc.description.references | Meuleman, J., Van Asseldonk, E., Van Oort, G., Rietman, H., & Van Der Kooij, H. (2016). LOPES II - Design and Evaluation of an Admittance Controlled Gait Training Robot with Shadow-Leg Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(3), 352-363. https://doi.org/10.1109/TNSRE.2015.2511448 | es_ES |
dc.description.references | Minassian, K., Hofstoetter, U. S., Dzeladini, F., Guertin, P. A., & Ijspeert, A. (2017). The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking? Neuroscientist, 23(6), 649-663. https://doi.org/10.1177/1073858417699790 | es_ES |
dc.description.references | Mohd Adib, M. A. H., Han, S. Y., Ramani, P. R., You, L. J., Yan, L. M., Mat Sahat, I., & Mohd Hasni, N. H. (2019). Restoration of Kids Leg Function Using Exoskeleton Robotic Leg (ExRoLEG) Device. Lecture Notes in Electrical Engineering, 538, 335-342. https://doi.org/10.1007/978-981-13-3708-6_28 | es_ES |
dc.description.references | Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S. Y., Ali, M. K., AlMazroa, M. A., Alvarado, M., Anderson, H. R., … Lopez, A. D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England), 380(9859), 2197-2223. https://doi.org/10.1016/S0140-6736(12)61689-4 | es_ES |
dc.description.references | Palomino-Díaz, V., & … P. R.-S.-X. S. C. (n.d.). DISEÑO CONCEPTUAL DE UNA PLATAFORMA ROBÓTICA PARA AYUDAR A QUE LOS NIÑOS CON PARÁLISIS CEREBRAL DESCUBRAN CÓMO. Burjcdigital.Urjc.Es. Retrieved November 4, 2022, from https://burjcdigital.urjc.es/bitstream/handle/10115/17868/Actas_V2 %281%29.pdf?sequence=3&isAllowed=y#page=84 | es_ES |
dc.description.references | Patané, F., Rossi, S., Del Sette, F., Taborri, J., & Cappa, P. (2017). WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 906-916. https://doi.org/10.1109/TNSRE.2017.2651404 | es_ES |
dc.description.references | Patel, A. V., Hildebrand, J. S., Leach, C. R., Campbell, P. T., Doyle, C., Shuval, K., Wang, Y., & Gapstur, S. M. (2018). Walking in Relation to Mortality in a Large Prospective Cohort of Older U.S. Adults. American Journal of Preventive Medicine, 54(1), 10-19. https://doi.org/10.1016/j.amepre.2017.08.019 | es_ES |
dc.description.references | Pathak, S. (2019). Biomimicry: (Innovation Inspired by Nature). International Journal of New Technology and Research, 5(6). https://doi.org/10.31871/IJNTR.5.6.17 | es_ES |
dc.description.references | PHEASANT, S. T. (2007). A Review of: "Human Walking". By V. T. INMAN, H.J. RALSTON and F. TODD. (Baltimore, London: Williams & Wilkins, 1981.) [Pp.154.]. Http://Dx.Doi.Org/10.1080/00140138108924919, 24(12), 969-976. https://doi.org/10.1080/00140138108924919 | es_ES |
dc.description.references | Pons, J. (2008). Wearable robots: biomechatronic exoskeletons. https://doi.org/10.1002/9780470987667 | es_ES |
dc.description.references | Pratt, J. E., Krupp, B. T., Morse, C. J., & Collins, S. H. (2004). The RoboKnee: An exoskeleton for enhancing strength and endurance during walking. Proceedings - IEEE International Conference on Robotics and Automation, 2004(3), 2430-2435. https://doi.org/10.1109/ROBOT.2004.1307425 | es_ES |
dc.description.references | Prochazka, A., Gritsenko, V., & Yakovenko, S. (2002). Sensory control of locomotion: reflexes versus higher-level control. Advances in Experimental Medicine and Biology, 508, 357-367. https://doi.org/10.1007/978-1-4615-0713-0_41 | es_ES |
dc.description.references | Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A. (n.d.). ROS: an open-source Robot Operating System. Retrieved October 20, 2022, from http://stair.stanford.edu | es_ES |
dc.description.references | Rocon, E., & Pons, J. L. (2011). Exoskeletons in Rehabilitation Robotics. 69. https://doi.org/10.1007/978-3-642-17659-3 | es_ES |
dc.description.references | Sanz-merodio, D., Sancho, J., & Erez, M. P. (2020). of the Atlas 2020 Lower-Limb Active Orthosis. 860-868. https://doi.org/10.1142/9789813149137_0100 | es_ES |
dc.description.references | Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. The Journal of Physiology, 40(1-2), 28-121. https://doi.org/10.1113/jphysiol.1910.sp001362 | es_ES |
dc.description.references | Shi, D., Zhang, W., Zhang, W., & Ding, X. (2019). A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering (English Edition), 32(1), 1-11. https://doi.org/10.1186/s10033-019-0389-8 | es_ES |
dc.description.references | Sorozabal, P., Delgado-Oleas, G., Gutiérrez, Á., & Rocon, E. (2022). Generador de patrones de marcha tridimensionales dependientes de la velocidad para el control de exoesqueletos. XLIII Jornadas de Automática: Libro de Actas: 7, 8 y 9 de Septiembre de 2022, Logroño (La Rioja), 128-133. https://doi.org/10.17979/spudc.9788497498418.0128 | es_ES |
dc.description.references | Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., Del Millán, J. R., Riener, R., Vallery, H., & Gassert, R. (2015). Control strategies for active lower extremity prosthetics and orthotics: A review. Journal of NeuroEngineering and Rehabilitation, 12(1). https://doi.org/10.1186/1743-0003-12-1 | es_ES |
dc.description.references | Van De Crommert, H. W. A. A., Mulder, T., & Duysens, J. (1998). Neural control of locomotion: Sensory control of the central pattern generator and its relation to treadmill training. Gait and Posture, 7(3), 251-263. https://doi.org/10.1016/S0966-6362(98)00010-1 | es_ES |
dc.description.references | Varol, H. A., Sup, F., & Goldfarb, M. (2010). Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Transactions on Biomedical Engineering, 57(3), 542-551. https://doi.org/10.1109/TBME.2009.2034734 | es_ES |
dc.description.references | Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16(3-4), 273-288. https://doi.org/10.1016/0160-2896(92)90010-O | es_ES |
dc.description.references | Wang, S., Meijneke, C., & Van Der Kooij, H. (2013). Modeling, design, and optimization of Mindwalker series elastic joint. IEEE International Conference on Rehabilitation Robotics, June. https://doi.org/10.1109/ICORR.2013.6650381 | es_ES |
dc.description.references | Woods, D. L., Wyma, J. M., Yund, E. W., Herron, T. J., & Reed, B. (2015). Factors influencing the latency of simple reaction time. Frontiers in Human Neuroscience, 9(MAR), 1-12. https://doi.org/10.3389/fnhum.2015.00131 | es_ES |