Mostrar el registro sencillo del ítem
dc.contributor.author | Continelli, Nicole A. | es_ES |
dc.contributor.author | Nagua Cuenca, Luis Fernando | es_ES |
dc.contributor.author | Monje, Concepción A. | es_ES |
dc.contributor.author | Balaguer, Carlos | es_ES |
dc.date.accessioned | 2023-07-10T12:29:04Z | |
dc.date.available | 2023-07-10T12:29:04Z | |
dc.date.issued | 2023-03-14 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/194758 | |
dc.description.abstract | [ES] En este trabajo se aborda el problema del modelado de un cuello robótico blando mediante el uso de diferentes arquitecturas de redes neuronales, estudiando la influencia en los resultados del número de capas de cada red y de su correspondiente función de activación. Se emplearan las funciones de activación Tangente Hiperbólica (TANH) y Unidad Lineal Exponencial (ELU). Los modelos obtenidos se compararan con un modelo basado en Perceptron Multicapa (MLP) de parámetros optimizados, así comocon el modelo cinemático analítico del cuello. Los resultados experimentales obtenidos demostraran la ventaja del empleo de las técnicas de aprendizaje automático para el modelado de sistemas altamente no lineales como el del cuello robótico blando, cuya característica elástica dificulta la formulación de un modelo analítico robusto. | es_ES |
dc.description.abstract | [EN] In this paper we address the problem of modeling a soft robotic neck by using different neural network architectures, studying the influence on the results of the number of layers of each network and its corresponding activation function. The Tangent Hyperbolic Tangent (TANH) and Exponential Linear Unit (ELU) activation functions are used. The obtained models are compared with a Multi-Layer Perceptron (MLP) with optimized parameters, as well as with the kinematic model of the neck. The experimental results demonstrate the advantage of using machine learning techniques for modeling highly nonlinear systems such as this soft robotic neck, whose elastic characteristics make it difficult to formulate a robust analytical model. | es_ES |
dc.description.sponsorship | Esta investigación ha recibido financiación del proyecto SOFIA: Articulación blanda inteligente con capacidades de re-configuración y modularidad para plataformas robóticas, con referencia PID2020-13194GB-I00, financiado por el Ministerio de Economía, Industria y Competitividad. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation | ino:eu-repo/grantAgreement/AEI//PID2020-113011RB-I00/ES/SOSTENIBILIDAD DEL TERCER SECTOR DE LA COMUNICACION. DISEÑO Y APLICACION DE INDICADORES/ | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Soft robotics | es_ES |
dc.subject | Constant curvature (CC) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Neural network | es_ES |
dc.subject | Multilayer perceptron (MLP) | es_ES |
dc.subject | Activation function | es_ES |
dc.subject | Robótica blanda | es_ES |
dc.subject | Curvatura constante (CC) | es_ES |
dc.subject | Aprendizaje automático | es_ES |
dc.subject | Red neuronal | es_ES |
dc.subject | Perceptrón multicapa (MLP) | es_ES |
dc.subject | Funcion de activación | es_ES |
dc.title | Modelado de un cuello robótico blando mediante aprendizaje automático | es_ES |
dc.title.alternative | Modeling of a soft robotic neck using machine learning techniques | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2023.18752 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal | es_ES |
dc.description.bibliographicCitation | Continelli, NA.; Nagua Cuenca, LF.; Monje, CA.; Balaguer, C. (2023). Modelado de un cuello robótico blando mediante aprendizaje automático. Revista Iberoamericana de Automática e Informática industrial. 20(3):282-292. https://doi.org/10.4995/riai.2023.18752 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2023.18752 | es_ES |
dc.description.upvformatpinicio | 282 | es_ES |
dc.description.upvformatpfin | 292 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\18752 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Becerra, Y., Arbulu, M., Soto, S., Martinez, F., 2019. A comparison among the denavit-hartenberg, the screw theory, and the iterative methods to solve inverse kinematics for assistant robot arm. In: International Conference on Swarm Intelligence. Springer, pp. 447-457. https://doi.org/10.1007/978-3-030-26369-0_42 | es_ES |
dc.description.references | Brownlee, J., Mastery, M. L., 2017. Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras. Machine Learning Mastery. URL: https://books.google.es/books?id=eJw2nQAACAAJ | es_ES |
dc.description.references | Clevert, D.-A., Unterthiner, T., Hochreiter, S., 2015. Fast and accurate deep network learning by exponential linear units (elus).URL: https://arxiv.org/abs/1511.07289 DOI: 10.48550/ARXIV.1511.07289 | es_ES |
dc.description.references | Continelli, N., Nagua, L., Monje, C. A., Balaguer, C., 2022. Identificaci'on de un cuello robótico blando mediante aprendizaje automático. In: Jornadas de Robótica, Educación y Bioingeniería, pp. 124-130. | es_ES |
dc.description.references | Copaci, D., Muñoz, J., González, I., Monje, C. A., Moreno, L., 2020. SMAdriven soft robotic neck: Design, control and validation. IEEE Access 8, 199492-199502. https://doi.org/10.1109/ACCESS.2020.3035510 | es_ES |
dc.description.references | Gholamy, A., Kreinovich, V., Kosheleva, O., 2018. Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. International Journal of Intelligent Technologies and Applied Statistics 11 (2), 105-111. | es_ES |
dc.description.references | Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial nets. Advances in neural information processing systems 27. | es_ES |
dc.description.references | Goodfellow, I. J., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, Cambridge, MA, USA. | es_ES |
dc.description.references | Hernández-Vicen, J., Martínez, S., Balaguer, C., 2021. Principios básicos para el desarrollo de una aplicaci'on de bi-manipulación de cajas por un robot humanoide. Revista Iberoamericana de Automática e Informática Industrial 18 (2), 129-137. https://doi.org/10.4995/riai.2020.13097 | es_ES |
dc.description.references | Jin, L., Li, S., Yu, J., He, J., 2018. Robot manipulator control using neural networks: A survey. Neurocomputing 285, 23-34. https://doi.org/10.1016/j.neucom.2018.01.002 | es_ES |
dc.description.references | Jiokou Kouabon, K., Melingui, A., Lakhal, O., Kom, M., Merzouki, R., 2020. A learning framework to inverse kinematics of redundant manipulators. IFACPapersOnLine 53 (2), 9912-9917. https://doi.org/10.1016/j.ifacol.2020.12.2699 | es_ES |
dc.description.references | Jones, B. A., Walker, I. D., 2006. Practical kinematics for real-time implementation of continuum robots. IEEE Transactions on Robotics 22 (6), 1087- 1099. https://doi.org/10.1109/TRO.2006.886268 | es_ES |
dc.description.references | Köker, R., C¸ akar, T., Sari, Y., 2014. A neural-network committee machine approach to the inverse kinematics problem solution of robotic manipulators. Engineering with Computers 30 (4), 641-649. https://doi.org/10.1007/s00366-013-0313-2 | es_ES |
dc.description.references | Mena, L., Monje, C. A., Nagua, L., Muñoz, J., Balaguer, C., 2020. Test bench for evaluation of a soft robotic link. Frontiers in Robotics and AI 7, 27. https://doi.org/10.3389/frobt.2020.00027 | es_ES |
dc.description.references | Muñoz, J., Monje, C. A., Nagua, L. F., Balaguer, C., 2020. A graphical tuning method for fractional order controllers based on iso-slope phase curves. ISA transactions 105, 296-307. https://doi.org/10.1016/j.isatra.2020.05.045 | es_ES |
dc.description.references | Nagua, L., Monje, C. A., Muñoz, J., Balaguer, C., 2018a. Design and performance validation of a cable-driven soft robotic neck. In: Proc. Actas de las Jornadas Nacionales de Robótica. pp. 1-5. URL: http://hdl.handle.net/10016/30567 | es_ES |
dc.description.references | Nagua, L., Muñoz, J., Monje, C. A., Balaguer, C., 2018b. A first approach to a proposal of a soft robotic link acting as a neck. Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018. https://doi.org/10.17979/spudc.9788497497565.0522 | es_ES |
dc.description.references | Nori, F., Jamone, L., Sandini, G., Metta, G., 2007. Accurate control of a humanlike tendon-driven neck. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 371-378. https://doi.org/10.1109/ICHR.2007.4813896 | es_ES |
dc.description.references | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,Weiss, R., Dubourg, V., Vanderplas, J., Passos,A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikitlearn: Machine learning in Python. Journal of Machine Learning Research 12, 2825-2830. | es_ES |
dc.description.references | Perlich, C., 2010. Learning curves in machine learning. In: Encyclopedia of Machine Learning. p. 5. | es_ES |
dc.description.references | Reinecke, J., Deutschmann, B., Fehrenbach, D., 2016. A structurally flexible humanoid spine based on a tendon-driven elastic continuum. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 4714-4721. https://doi.org/10.1109/ICRA.2016.7487672 | es_ES |
dc.description.references | Relaño, C., Muñoz, J., Monje, C. A., Martínez, S., González, D., 2022. Modeling and control of a soft robotic arm based on a fractional order control approach. Fractal and Fractional 7 (1), 8. https://doi.org/10.3390/fractalfract7010008 | es_ES |
dc.description.references | Segota, S. B., Andeli'c, N., Mrzljak, V., Lorencin, I., Kuric, I., Car, Z., 2021. Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator. International Journal of Advanced Robotic Systems 18 (4), 1729881420925283. https://doi.org/10.1177/1729881420925283 | es_ES |
dc.description.references | Sharma, S., Sharma, S., Athaiya, A., 2017. Activation functions in neural networks. towards data science 6 (12), 310-316. https://doi.org/10.33564/IJEAST.2020.v04i12.054 | es_ES |
dc.description.references | Siciliano, B., Khatib, O., Kr¨oger, T., 2008. Springer handbook of robotics. Vol. 200. Springer. https://doi.org/10.1007/978-3-540-30301-5 | es_ES |
dc.description.references | Thuruthel, T. G., Falotico, E., Renda, F., Laschi, C., 2017. Learning dynamic models for open loop predictive control of soft robotic manipulators. Bioinspiration & biomimetics 12 (6), 066003. https://doi.org/10.1088/1748-3190/aa839f | es_ES |
dc.description.references | Tran, L., Zhang, Z., Yeo, S., Sun, Y., Yang, G., 2011. Control of a cable-driven 2-dof joint module with a flexible backbone. In: 2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (Student). IEEE, pp. 150-155. https://doi.org/10.1109/STUDENT.2011.6089343 | es_ES |
dc.description.references | Wang, X., Liu, X., Chen, L., Hu, H., 2021. Deep-learning damped least squares method for inverse kinematics of redundant robots. Measurement 171, 108821. https://doi.org/10.1016/j.measurement.2020.108821 | es_ES |
dc.description.references | Webster III, R. J., Jones, B. A., 2010. Design and kinematic modeling of constant curvature continuum robots: A review. The International Journal of Robotics Research 29 (13), 1661-1683. https://doi.org/10.1177/0278364910368147 | es_ES |
dc.description.references | Zaki, M. J., Meira, Jr, W., 2020. Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2nd Edition. Cambridge University Press. https://doi.org/10.1017/9781108564175 | es_ES |
dc.description.references | Zou, J., Han, Y., So, S.-S., 2009. Overview of artificial neural networks. Artificial neural networks: methods and applications, 14-22. https://doi.org/10.1007/978-1-60327-101-1_2 | es_ES |