- -

Sistema robótico de auto-acoplamiento para la interfaz robótica SIROM

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sistema robótico de auto-acoplamiento para la interfaz robótica SIROM

Mostrar el registro completo del ítem

Bilbao Moreno, D.; Ferrer Uriarte, U.; Viñals Abelan, JJ.; Guerra Franco, G.; Irigoyen Gordo, E.; Cabanes Axpe, I. (2023). Sistema robótico de auto-acoplamiento para la interfaz robótica SIROM. Revista Iberoamericana de Automática e Informática industrial. 20(3):269-280. https://doi.org/10.4995/riai.2023.19271

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194759

Ficheros en el ítem

Metadatos del ítem

Título: Sistema robótico de auto-acoplamiento para la interfaz robótica SIROM
Otro titulo: Self-coupling robotic system for the SIROM multifunctional interface
Autor: Bilbao Moreno, Daniel Ferrer Uriarte, Unai Viñals Abelan, Jose Javier Guerra Franco, Gonzalo Irigoyen Gordo, Eloy Cabanes Axpe, Itziar
Fecha difusión:
Resumen:
[EN] In order to perform in-orbit servicing tasks autonomously and without the need for human personnel, this work presents the development of a self-coupling robotic system based on cameras and visual markers that allow ...[+]


[ES] Con objeto de realizar tareas de servicio en órbita de manera autónoma y sin necesidad de personal humano, este trabajo presenta el desarrollo de un sistema robótico de auto-acoplamiento basado en cámaras y marcadores ...[+]
Palabras clave: Visual servoing control , Position estimation , Orientation estimation , Adaptative control , Force control , Robotic manipulation , SIROM , Robotic assembly , Control servo visual , Estimación de posición , Estimación de orientación , Control adaptativo , Control de fuerza , Manipulación robótica , Ensamblaje robótico
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.19271
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2023.19271
Código del Proyecto:
info:eu-repo/grantAgreement/UPV%2FEHU//GIU19%2F045/ES
Agradecimientos:
Este trabajo es parte de un desarrollo interno de SENER Aeroespacial el cual forma parte del proyecto SIROM. De esta manera, los autores agradecen el continuo apoyo y colaboración tanto a SENER Aeroespacial como al ...[+]
Tipo: Artículo

References

AENOR, 2003. Robots manipuladores industriales: Criterios de an'alisis de prestaciones y métodos de ensayo relacionados (iso 9283:2003).

Asif, S., 1958. Announcement of the first satelite. Pravda Newspaper Article, 311-312. URL: https://digitalarchive.wilsoncenter.org/document/165454.pdf?v=1b97d7e06318bd134c57860e8ba96a5d

Bradski, G., 2000. The opencv library. Dr. Dobb's Journal of Software Tools. [+]
AENOR, 2003. Robots manipuladores industriales: Criterios de an'alisis de prestaciones y métodos de ensayo relacionados (iso 9283:2003).

Asif, S., 1958. Announcement of the first satelite. Pravda Newspaper Article, 311-312. URL: https://digitalarchive.wilsoncenter.org/document/165454.pdf?v=1b97d7e06318bd134c57860e8ba96a5d

Bradski, G., 2000. The opencv library. Dr. Dobb's Journal of Software Tools.

Branz, F., Francesconi, A., 2017. Experimental evaluation of a dielectric elastomer robotic arm for space applications. Acta Astronautica 133, 324--333. https://doi.org/10.1016/j.actaastro.2016.11.007

Corke, P., 01 2017. Robotics, Vision and Control. Vol. 118. https://doi.org/10.1007/978-3-319-54413-7

De Stefano, M., Mishra, H., Balachandran, R., Lampariello, R., Ott, C., Secchi, C., 2019. Multi-rate tracking control for a space robot on a controlled satellite: A passivity-based strategy. IEEE Robotics and Automation Letters 4 (2), 1319-1326. https://doi.org/10.1109/LRA.2019.2895420

De Stefano, M., Mishra, H., Giordano, A. M., Lampariello, R., Ott, C., 2021. A relative dynamics formulation for hardware- in-the-loop simulation of onorbit robotic missions. IEEE Robotics and Automation Letters 6 (2), 3569- 3576. https://doi.org/10.1109/LRA.2021.3064510

Diaz-Cano, I., Quintana, F. M., Galindo, P. L., Morgado-Estevez, A., 2022. Eye-to-hand calibration of an industrial robotic arm with structured light 3d cameras. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 19, 154-163. https://doi.org/10.4995/riai.2021.16054

Dong, G., Zhu, Z. H., 2015. Position-based visual servo control of autonomous robotic manipulators. Acta Astronautica 115, 291-302. https://doi.org/10.1016/j.actaastro.2015.05.036

EROSS, P., 2022. Eross - eropean robotic orbital support services. URL: https://eross-h2020.eu/eross/

European Space Policy Institute, E. R., 2020. 76-in-orbit services-full report. URL: https://www.espi.or.at/reports/in-orbit-services/

F. Chaumette, S. H., Hutchinson, S., 2006. Visual servo control, part i: Basic approaches. IEEE Robotics Automation Magazine 13, 82-90. https://doi.org/10.1109/MRA.2006.250573

G. Guerra, J. Vi˜nals, I. S. M. D.-C., Gala, J., 2022. Development of robotic fluid transfer interface based on rider connector.

Garrido-Jurado, S., Mu˜noz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M., 2014. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition 47 (6), 2280-2292. https://doi.org/10.1016/j.patcog.2014.01.005

Hutchinson, S., Hager, G., Corke, P., 11 1996. A tutorial on visual servo control. Robotics and Automation, IEEE Transactions on 12, 651 - 670. https://doi.org/10.1109/70.538972

Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N., 04 2021. Fiducial markers for pose estimation: Overview, applications and experimental comparison of the artag, apriltag, aruco and stag markers. Journal of Intelligent Robotic Systems 101. https://doi.org/10.1007/s10846-020-01307-9

Kermorgant, O., Chaumette, F., 2014. Dealing with constraints in sensor-based robot control. IEEE Transactions on Robotics 30 (1), 244-257. https://doi.org/10.1109/TRO.2013.2281560

Larouche, B. P., Zhu, Z. H., 2014. Autonomous robotic capture of noncooperative target using visual servoing and motion predictive control. Autonomous Robots 37, 157-167. https://doi.org/10.1007/s10514-014-9383-2

Muis, A., Ohnishi, K., 2004. Eye-to-hand approach on eye-in-hand configuration within real-time visual servoing. In: The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04. Vol. 10. pp. 647-652. https://doi.org/10.1109/AMC.2004.1297945

Muñoz-Salinas, R., 2018. Aruco library documentation. URL: https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/

Qiu, Z., Hu, S., Liang, X., 03 2018. Model predictive control for constrained image-based visual servoing in uncalibrated environments: Mpc for constrained ibvs in uncalibrated environments. Asian Journal of Control 21. https://doi.org/10.1002/asjc.1756

Robots, U., FZI, 2021. Universal robots ros driver. GitHub. URL: https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

Romero-Ramirez, F. J., Muñoz-Salinas, R., Medina-Carnicer, R., 2018. Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38-47. https://doi.org/10.1016/j.imavis.2018.05.004

Scherzinger, S., R¨onnau, A., Dillmann, R., 2019. Contact skill imitation learning for robot-independent assembly programming. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4309-4316. https://doi.org/10.1109/IROS40897.2019.8967523

SENER, G., 2021. Sirom standard interface for robotic manipulation. Youtube. URL: https://www.youtube.com/watch?v=uwpm_SOnYE8

SENER, G., 2022a. Ensayo de auto-acoplamiento de la interfaz robótica sirom. Youtube. URL: https://www.youtube.com/watch?v=eNaQr6CyfT8

SENER, G., 2022b. Standard interface for robotic manipulation (sirom) - datasheet. SENER Aeroespacial. URL: https://www.aeroespacial.sener/en/pdf-profile-project/standard-interface-for-robotic-manipulation-sirom

Vinals, J., Gala, J., Guerra, G., 2020. Standard interface for robotic manipulation (sirom): Src h2020 og5 final results-future upgrades and applications.

ViSP, 2022. Tutorial: How to boost your visual servo control law. Visual Servoing Platform. URL: https://visp-doc.inria.fr/doxygen/visp-3.5.0/tutorial-boost-vs.html

Zhang, Z., 1999. Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. Vol. 1. pp. 666-673. https://doi.org/10.1109/ICCV.1999.791289

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem