AENOR, 2003. Robots manipuladores industriales: Criterios de an'alisis de prestaciones y métodos de ensayo relacionados (iso 9283:2003).
Asif, S., 1958. Announcement of the first satelite. Pravda Newspaper Article, 311-312. URL: https://digitalarchive.wilsoncenter.org/document/165454.pdf?v=1b97d7e06318bd134c57860e8ba96a5d
Bradski, G., 2000. The opencv library. Dr. Dobb's Journal of Software Tools.
[+]
AENOR, 2003. Robots manipuladores industriales: Criterios de an'alisis de prestaciones y métodos de ensayo relacionados (iso 9283:2003).
Asif, S., 1958. Announcement of the first satelite. Pravda Newspaper Article, 311-312. URL: https://digitalarchive.wilsoncenter.org/document/165454.pdf?v=1b97d7e06318bd134c57860e8ba96a5d
Bradski, G., 2000. The opencv library. Dr. Dobb's Journal of Software Tools.
Branz, F., Francesconi, A., 2017. Experimental evaluation of a dielectric elastomer robotic arm for space applications. Acta Astronautica 133, 324--333. https://doi.org/10.1016/j.actaastro.2016.11.007
Corke, P., 01 2017. Robotics, Vision and Control. Vol. 118. https://doi.org/10.1007/978-3-319-54413-7
De Stefano, M., Mishra, H., Balachandran, R., Lampariello, R., Ott, C., Secchi, C., 2019. Multi-rate tracking control for a space robot on a controlled satellite: A passivity-based strategy. IEEE Robotics and Automation Letters 4 (2), 1319-1326. https://doi.org/10.1109/LRA.2019.2895420
De Stefano, M., Mishra, H., Giordano, A. M., Lampariello, R., Ott, C., 2021. A relative dynamics formulation for hardware- in-the-loop simulation of onorbit robotic missions. IEEE Robotics and Automation Letters 6 (2), 3569- 3576. https://doi.org/10.1109/LRA.2021.3064510
Diaz-Cano, I., Quintana, F. M., Galindo, P. L., Morgado-Estevez, A., 2022. Eye-to-hand calibration of an industrial robotic arm with structured light 3d cameras. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 19, 154-163. https://doi.org/10.4995/riai.2021.16054
Dong, G., Zhu, Z. H., 2015. Position-based visual servo control of autonomous robotic manipulators. Acta Astronautica 115, 291-302. https://doi.org/10.1016/j.actaastro.2015.05.036
EROSS, P., 2022. Eross - eropean robotic orbital support services. URL: https://eross-h2020.eu/eross/
European Space Policy Institute, E. R., 2020. 76-in-orbit services-full report. URL: https://www.espi.or.at/reports/in-orbit-services/
F. Chaumette, S. H., Hutchinson, S., 2006. Visual servo control, part i: Basic approaches. IEEE Robotics Automation Magazine 13, 82-90. https://doi.org/10.1109/MRA.2006.250573
G. Guerra, J. Vi˜nals, I. S. M. D.-C., Gala, J., 2022. Development of robotic fluid transfer interface based on rider connector.
Garrido-Jurado, S., Mu˜noz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M., 2014. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition 47 (6), 2280-2292. https://doi.org/10.1016/j.patcog.2014.01.005
Hutchinson, S., Hager, G., Corke, P., 11 1996. A tutorial on visual servo control. Robotics and Automation, IEEE Transactions on 12, 651 - 670. https://doi.org/10.1109/70.538972
Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N., 04 2021. Fiducial markers for pose estimation: Overview, applications and experimental comparison of the artag, apriltag, aruco and stag markers. Journal of Intelligent Robotic Systems 101. https://doi.org/10.1007/s10846-020-01307-9
Kermorgant, O., Chaumette, F., 2014. Dealing with constraints in sensor-based robot control. IEEE Transactions on Robotics 30 (1), 244-257. https://doi.org/10.1109/TRO.2013.2281560
Larouche, B. P., Zhu, Z. H., 2014. Autonomous robotic capture of noncooperative target using visual servoing and motion predictive control. Autonomous Robots 37, 157-167. https://doi.org/10.1007/s10514-014-9383-2
Muis, A., Ohnishi, K., 2004. Eye-to-hand approach on eye-in-hand configuration within real-time visual servoing. In: The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04. Vol. 10. pp. 647-652. https://doi.org/10.1109/AMC.2004.1297945
Muñoz-Salinas, R., 2018. Aruco library documentation. URL: https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/
Qiu, Z., Hu, S., Liang, X., 03 2018. Model predictive control for constrained image-based visual servoing in uncalibrated environments: Mpc for constrained ibvs in uncalibrated environments. Asian Journal of Control 21. https://doi.org/10.1002/asjc.1756
Robots, U., FZI, 2021. Universal robots ros driver. GitHub. URL: https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
Romero-Ramirez, F. J., Muñoz-Salinas, R., Medina-Carnicer, R., 2018. Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38-47. https://doi.org/10.1016/j.imavis.2018.05.004
Scherzinger, S., R¨onnau, A., Dillmann, R., 2019. Contact skill imitation learning for robot-independent assembly programming. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4309-4316. https://doi.org/10.1109/IROS40897.2019.8967523
SENER, G., 2021. Sirom standard interface for robotic manipulation. Youtube. URL: https://www.youtube.com/watch?v=uwpm_SOnYE8
SENER, G., 2022a. Ensayo de auto-acoplamiento de la interfaz robótica sirom. Youtube. URL: https://www.youtube.com/watch?v=eNaQr6CyfT8
SENER, G., 2022b. Standard interface for robotic manipulation (sirom) - datasheet. SENER Aeroespacial. URL: https://www.aeroespacial.sener/en/pdf-profile-project/standard-interface-for-robotic-manipulation-sirom
Vinals, J., Gala, J., Guerra, G., 2020. Standard interface for robotic manipulation (sirom): Src h2020 og5 final results-future upgrades and applications.
ViSP, 2022. Tutorial: How to boost your visual servo control law. Visual Servoing Platform. URL: https://visp-doc.inria.fr/doxygen/visp-3.5.0/tutorial-boost-vs.html
Zhang, Z., 1999. Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. Vol. 1. pp. 666-673. https://doi.org/10.1109/ICCV.1999.791289
[-]