- -

Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aginaga, Jokin es_ES
dc.contributor.author García-Cuesta, Iván es_ES
dc.contributor.author Iriarte, Xabier es_ES
dc.contributor.author Plaza, Aitor es_ES
dc.date.accessioned 2023-07-10T16:54:25Z
dc.date.available 2023-07-10T16:54:25Z
dc.date.issued 2023-04-18
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/194760
dc.description.abstract [EN] The precision of a robot is linked to its stiffness. Compared with traditional machine tools, industrial robots have large workspace as an advantage, but low stiffness as a disadvantage. Furthermore, stiffness has a high dependence and variability on the robot's posture or configuration. Hence, a stiffness analysis of robots is necessary, which is evaluated by means of the stiffness matrix. In this paper, a stiffness analysis of a serial robot is presented. Given the diversity of representative indices extracted from the stiffness matrix, it is proposed the use of an index that takes into account the direction of the loads supported by the robot and the direction in which it is desired that the robot provides stiffness in the specific application. Then, the stiffness index has been used to move the robot to configurations that improve stiffness, which is possible in applications where the robot has at least one redundant degree-of-freedom (DOF). The methodology has been applied to a 7-DOF robot used as a support robot in thin-wall machining. Since only 5 GDLs are needed to define the trajectory, 2 reduntant GDLs are used to improve the stiffness. es_ES
dc.description.abstract [ES] La precisión de un robot está ligada a su rigidez. En comparación con la máquina herramienta tradicional, los robots industriales tienen un gran espacio de trabajo como ventaja, pero una rigidez reducida como desventaja. Además, la rigidez tiene una gran dependencia y variabilidad con la postura o configuración del robot. De ahí que resulte necesario un análisis de rigidez de los robots, que se evalúa mediante la matriz de rigidez. En este trabajo se presenta un análisis de rigidez de un robot serie. Ante la diversidad de índices representativos extraídos a partir de la matriz de rigidez, se ha propuesto el uso de un índice que tenga en cuenta la dirección de las cargas que soporta el robot y la dirección en que se desea que el robot aporte rigidez en la aplicación específica. Asimismo, se ha utilizado el índice de rigidez para llevar el robot a configuraciones que mejoren la rigidez, hecho que resulta posible en aplicaciones en las que el robot tiene al menos un grado de libertad (GDL) redundante. La metodología se ha aplicado a un robot de 7 GDL utilizado como robot de soporte en el mecanizado de paredes delgadas. Dado que para definir latrayectoria únicamente son necesarios 5 GDL, se utilizan 2 GDL reduntantes para mejorar la rigidez. es_ES
dc.description.sponsorship Este trabajo ha contado con la financiación de la “Convocatoria de ayudas a proyectos de I+D del Gobierno de Navarra”, bajo el proyecto con Ref. 0011-1365-2021-000080. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Industrial robotics es_ES
dc.subject Redundant degree of freedom es_ES
dc.subject Stiffness es_ES
dc.subject Pose optimization es_ES
dc.subject Performance index es_ES
dc.subject Robótica industrial es_ES
dc.subject Grado de libertad redundante es_ES
dc.subject Rigidez es_ES
dc.subject Optimización de postura es_ES
dc.subject Índice de comportamiento es_ES
dc.title Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas es_ES
dc.title.alternative Maximum stiffness trajectories of a redundant robot acting as a support in thin-wall machining es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.18977
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de Navarra//0011-1365-2021-000080/ES es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Aginaga, J.; García-Cuesta, I.; Iriarte, X.; Plaza, A. (2023). Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas. Revista Iberoamericana de Automática e Informática industrial. 20(3):259-268. https://doi.org/10.4995/riai.2023.18977 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.18977 es_ES
dc.description.upvformatpinicio 259 es_ES
dc.description.upvformatpfin 268 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\18977 es_ES
dc.contributor.funder Gobierno de Navarra es_ES
dc.description.references Aginaga, J., Zabalza, I., Altuzarra, O., Nájera, J., 2012. Improving static stiffness of the 6-rus parallel manipulator using inverse singularities. Robotics and Computer Integrated Manufacturing 28, 458-471. https://doi.org/10.1016/j.rcim.2012.02.003 es_ES
dc.description.references Angeles, J., 2010. On the nature of the cartesian stiffness matrix. Ingeniería Mecánica 3 (5), 163-170. es_ES
dc.description.references Azulay, H., Mahmoodi, M., Zhao, R., Mills, J. K., Benhabib, B., 2014. Comparative analysis of a new 3×PPRS parallel kinematic mechanism. Robotics and Computer-Integrated Manufacturing 30 (4), 369-378. https://doi.org/10.1016/j.rcim.2013.12.003 es_ES
dc.description.references Bu, Y., Liao, W., Tian, W., Zhang, J., Zhang, L., 2017. Stiffness analysis and optimization in robotic drilling application. Precision Engineering 49, 388- 400. https://doi.org/10.1016/j.precisioneng.2017.04.001 es_ES
dc.description.references Chen, C., Peng, F., Yan, R., Li, Y., Wei, D., Fan, Z., Tang, X., Zhu, Z., 2019. Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robotics and Computer-Integrated Manufacturing 55, 29-40. https://doi.org/10.1016/j.rcim.2018.07.003 es_ES
dc.description.references Cvitanic, T., Nguyen, V., Melkote, S., 2020. Pose optimization in robotic machining usieng static and dynamic stiffness models. Robotics and Computer Integrated Manufacturing 66, 101992. https://doi.org/10.1016/j.rcim.2020.101992 es_ES
dc.description.references Díaz-Cano, I., Quintana, F. M., Galindo, P. L., Morgado-Estevez, A., 2022. Calibraci'on ojo a mano de un brazo robótico industrial con cámaras 3d de luz estructurada. Revista Iberoamerica de Automática e Informática Industrial 19 (2), 154-163. https://doi.org/10.4995/riai.2021.16054 es_ES
dc.description.references Denavit, J., Hartenberg, R. S., 1955. A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics 22 (2), 215-221. https://doi.org/10.1115/1.4011045 es_ES
dc.description.references Guo, Y., Dong, H., Ke, Y., 2015. Stiffness-oriented posture optimization in robotic machining applications. Robotics and Computer-Integrated Manufacturing 35, 69-76. https://doi.org/10.1016/j.rcim.2015.02.006 es_ES
dc.description.references Herranz, S., Campa, F. J., de Lacalle, L. N. L., Rivero, A., Lamikiz, A., Ukar, E., Sánchez, J. A., Bravo, U., 2005. The milling of airframe components with low rigidity: A general approach to avoid static and dynamic problems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219 (11), 789-801. https://doi.org/10.1243/095440505X32742 es_ES
dc.description.references Léger, J., Angeles, J., 2016. Off-line programming of six-axis robots for optimum five-dimensional tasks. Mechanism and Machine Theory 100, 155-169. https://doi.org/10.1016/j.mechmachtheory.2016.01.015 es_ES
dc.description.references Li, M., Hu, X., Du, L., Bao, S., Yuan, J., 2022. Stiffness modeling of redundant robots with large load capacity and workspace. In: 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR). pp. 407-412. https://doi.org/10.1109/RCAR54675.2022.9872192 es_ES
dc.description.references Liao, Z.-Y., Wang, Q.-H., Xie, H.-L., Li, J.-R., Zhou, X.-F., Pan, T.-H., 2022. Optimization of robot posture and workpiece setup in robotic milling with stiffness threshold. IEEE/ASME Transactions on Mechatronics 27 (1), 582-593. https://doi.org/10.1109/TMECH.2021.3068599 es_ES
dc.description.references Lin, J., Ye, C., Yang, J., Zhao, H., Ding, H., Luo, M., 2022. Contour error-based optimization of the end-effector pose of a 6 degree-of-freedom serial robot in milling operation. Robotics and Computer-Integrated Manufacturing 73, 102257. https://doi.org/10.1016/j.rcim.2021.102257 es_ES
dc.description.references Mohammadi, Y., Ahmadi, K., 2022. In-process frequency response function measurement for robotic milling. Experimental Techniques, 1747-1567. https://doi.org/10.1007/s40799-022-00590-5 es_ES
dc.description.references Ozturk, E., Barrios, A., Sun, C., Rajabi, S., Munoa, J., 2018. Robotic assisted milling for increased productivity. CIRP Annals 67 (1), 427-430. https://doi.org/10.1016/j.cirp.2018.04.031 es_ES
dc.description.references Qintao, C., Jizhi, Y., Shen, Y., Pengyu, L., 2019. Optimization of comprehensive stiffness performance index for industrial robot in milling process. In: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). pp. 609-614. https://doi.org/10.1109/CYBER46603.2019.9066502 es_ES
dc.description.references Rao, A. B. K., Saha, S. K., Rao, P. V. M., 2005. Stiffness analysis of hexaslide machine tools. Advanced Robotics 19 (6), 671-693. https://doi.org/10.1163/1568553054255673 es_ES
dc.description.references Shimizu, M., Kakuya, H., Yoon,W.-K., Kitagaki, K., Kosuge, K., 2008. Analytical inverse kinematic computation for 7-dof redundant manipulators with joint limits and its application to redundancy resolution. IEEE Transactions on Robotics 24 (5), 1131-1142. https://doi.org/10.1109/TRO.2008.2003266 es_ES
dc.description.references Song, G., Su, S., Li, Y., Zhao, X., Du, H., Han, J., Zhao, Y., 2021. A closed-loop framework for the inverse kinematics of the 7 degrees of freedom manipulator. Robotica 39 (4), 572-581. https://doi.org/10.1017/S0263574720000582 es_ES
dc.description.references Torres, R., González, S., Elguea, I., Aginaga, J., Iriarte, X., Agirre, N., Inziarte, I., 2020. Robotic assisted thin-wall machining with a collaborative robot. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). pp. 1505-1508. https://doi.org/10.1109/CASE48305.2020.9216864 es_ES
dc.description.references Tsai, L. W., 1999. Robot Analysis: the Mechanics of Serial and Parallel Manipulators. John Willey and sons, New York. es_ES
dc.description.references Xue, X., Zhang, C., Chen, Q., Xu, X., 2022. The posture optimization method based on deformation index in robotic milling process. The International Journal of Advanced Manufacturing Technology 121 (7), 4999-5014. https://doi.org/10.1007/s00170-022-09745-5 es_ES
dc.description.references Zaplana, I., Claret, J. A., Basanez, L., 2018. An'alisis cinemático de robots manipuladores redundantes: aplicación a los robots Kuka LWR 4+ y ABB Yumi. Revista Iberoamerica de Automática e Informática Industrial 15 (2), 192-202. https://doi.org/10.4995/riai.2017.8822 es_ES
dc.description.references Zaplana, I., Hadfield, H., Lasenby, J., 2022. Closed-form solutions for the inverse kinematics of serial robots using conformal geometric algebra. Mechanism and Machine Theory 173, 104835. https://doi.org/10.1016/j.mechmachtheory.2022.104835 es_ES
dc.description.references Zhang, H., Cheng, G., Chen, S., Guo, F., Shan, X., 2018. Stiffness modeling and performance evaluation of 2(3hus +s) parallel manipulator. In: 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). pp. 456-461. https://doi.org/10.1109/ICARM.2018.8610777 es_ES
dc.description.references Zhao, J., Duan, Y., Xie, B., Zhang, Z., 2021. Fsw robot system dimensional optimization and trajectory planning based on soft stiffness indices. Journal of Manufacturing Processes 63, 88-97, trends in Intelligentizing Robotic Welding Processes. https://doi.org/10.1016/j.jmapro.2020.05.004 es_ES
dc.description.references Zhao, X., Tao, B., Qian, L., Yang, Y., Ding, H., 2020. Asymmetrical nonlinear impedance control for dual robotic machining of thin-walled workpieces. Robotics and Computer-Integrated Manufacturing 63, 101889. https://doi.org/10.1016/j.rcim.2019.101889 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem