Mostrar el registro sencillo del ítem
dc.contributor.author | Aginaga, Jokin | es_ES |
dc.contributor.author | García-Cuesta, Iván | es_ES |
dc.contributor.author | Iriarte, Xabier | es_ES |
dc.contributor.author | Plaza, Aitor | es_ES |
dc.date.accessioned | 2023-07-10T16:54:25Z | |
dc.date.available | 2023-07-10T16:54:25Z | |
dc.date.issued | 2023-04-18 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/194760 | |
dc.description.abstract | [EN] The precision of a robot is linked to its stiffness. Compared with traditional machine tools, industrial robots have large workspace as an advantage, but low stiffness as a disadvantage. Furthermore, stiffness has a high dependence and variability on the robot's posture or configuration. Hence, a stiffness analysis of robots is necessary, which is evaluated by means of the stiffness matrix. In this paper, a stiffness analysis of a serial robot is presented. Given the diversity of representative indices extracted from the stiffness matrix, it is proposed the use of an index that takes into account the direction of the loads supported by the robot and the direction in which it is desired that the robot provides stiffness in the specific application. Then, the stiffness index has been used to move the robot to configurations that improve stiffness, which is possible in applications where the robot has at least one redundant degree-of-freedom (DOF). The methodology has been applied to a 7-DOF robot used as a support robot in thin-wall machining. Since only 5 GDLs are needed to define the trajectory, 2 reduntant GDLs are used to improve the stiffness. | es_ES |
dc.description.abstract | [ES] La precisión de un robot está ligada a su rigidez. En comparación con la máquina herramienta tradicional, los robots industriales tienen un gran espacio de trabajo como ventaja, pero una rigidez reducida como desventaja. Además, la rigidez tiene una gran dependencia y variabilidad con la postura o configuración del robot. De ahí que resulte necesario un análisis de rigidez de los robots, que se evalúa mediante la matriz de rigidez. En este trabajo se presenta un análisis de rigidez de un robot serie. Ante la diversidad de índices representativos extraídos a partir de la matriz de rigidez, se ha propuesto el uso de un índice que tenga en cuenta la dirección de las cargas que soporta el robot y la dirección en que se desea que el robot aporte rigidez en la aplicación específica. Asimismo, se ha utilizado el índice de rigidez para llevar el robot a configuraciones que mejoren la rigidez, hecho que resulta posible en aplicaciones en las que el robot tiene al menos un grado de libertad (GDL) redundante. La metodología se ha aplicado a un robot de 7 GDL utilizado como robot de soporte en el mecanizado de paredes delgadas. Dado que para definir latrayectoria únicamente son necesarios 5 GDL, se utilizan 2 GDL reduntantes para mejorar la rigidez. | es_ES |
dc.description.sponsorship | Este trabajo ha contado con la financiación de la “Convocatoria de ayudas a proyectos de I+D del Gobierno de Navarra”, bajo el proyecto con Ref. 0011-1365-2021-000080. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Industrial robotics | es_ES |
dc.subject | Redundant degree of freedom | es_ES |
dc.subject | Stiffness | es_ES |
dc.subject | Pose optimization | es_ES |
dc.subject | Performance index | es_ES |
dc.subject | Robótica industrial | es_ES |
dc.subject | Grado de libertad redundante | es_ES |
dc.subject | Rigidez | es_ES |
dc.subject | Optimización de postura | es_ES |
dc.subject | Índice de comportamiento | es_ES |
dc.title | Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas | es_ES |
dc.title.alternative | Maximum stiffness trajectories of a redundant robot acting as a support in thin-wall machining | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2023.18977 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno de Navarra//0011-1365-2021-000080/ES | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Aginaga, J.; García-Cuesta, I.; Iriarte, X.; Plaza, A. (2023). Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas. Revista Iberoamericana de Automática e Informática industrial. 20(3):259-268. https://doi.org/10.4995/riai.2023.18977 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2023.18977 | es_ES |
dc.description.upvformatpinicio | 259 | es_ES |
dc.description.upvformatpfin | 268 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\18977 | es_ES |
dc.contributor.funder | Gobierno de Navarra | es_ES |
dc.description.references | Aginaga, J., Zabalza, I., Altuzarra, O., Nájera, J., 2012. Improving static stiffness of the 6-rus parallel manipulator using inverse singularities. Robotics and Computer Integrated Manufacturing 28, 458-471. https://doi.org/10.1016/j.rcim.2012.02.003 | es_ES |
dc.description.references | Angeles, J., 2010. On the nature of the cartesian stiffness matrix. Ingeniería Mecánica 3 (5), 163-170. | es_ES |
dc.description.references | Azulay, H., Mahmoodi, M., Zhao, R., Mills, J. K., Benhabib, B., 2014. Comparative analysis of a new 3×PPRS parallel kinematic mechanism. Robotics and Computer-Integrated Manufacturing 30 (4), 369-378. https://doi.org/10.1016/j.rcim.2013.12.003 | es_ES |
dc.description.references | Bu, Y., Liao, W., Tian, W., Zhang, J., Zhang, L., 2017. Stiffness analysis and optimization in robotic drilling application. Precision Engineering 49, 388- 400. https://doi.org/10.1016/j.precisioneng.2017.04.001 | es_ES |
dc.description.references | Chen, C., Peng, F., Yan, R., Li, Y., Wei, D., Fan, Z., Tang, X., Zhu, Z., 2019. Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robotics and Computer-Integrated Manufacturing 55, 29-40. https://doi.org/10.1016/j.rcim.2018.07.003 | es_ES |
dc.description.references | Cvitanic, T., Nguyen, V., Melkote, S., 2020. Pose optimization in robotic machining usieng static and dynamic stiffness models. Robotics and Computer Integrated Manufacturing 66, 101992. https://doi.org/10.1016/j.rcim.2020.101992 | es_ES |
dc.description.references | Díaz-Cano, I., Quintana, F. M., Galindo, P. L., Morgado-Estevez, A., 2022. Calibraci'on ojo a mano de un brazo robótico industrial con cámaras 3d de luz estructurada. Revista Iberoamerica de Automática e Informática Industrial 19 (2), 154-163. https://doi.org/10.4995/riai.2021.16054 | es_ES |
dc.description.references | Denavit, J., Hartenberg, R. S., 1955. A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics 22 (2), 215-221. https://doi.org/10.1115/1.4011045 | es_ES |
dc.description.references | Guo, Y., Dong, H., Ke, Y., 2015. Stiffness-oriented posture optimization in robotic machining applications. Robotics and Computer-Integrated Manufacturing 35, 69-76. https://doi.org/10.1016/j.rcim.2015.02.006 | es_ES |
dc.description.references | Herranz, S., Campa, F. J., de Lacalle, L. N. L., Rivero, A., Lamikiz, A., Ukar, E., Sánchez, J. A., Bravo, U., 2005. The milling of airframe components with low rigidity: A general approach to avoid static and dynamic problems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219 (11), 789-801. https://doi.org/10.1243/095440505X32742 | es_ES |
dc.description.references | Léger, J., Angeles, J., 2016. Off-line programming of six-axis robots for optimum five-dimensional tasks. Mechanism and Machine Theory 100, 155-169. https://doi.org/10.1016/j.mechmachtheory.2016.01.015 | es_ES |
dc.description.references | Li, M., Hu, X., Du, L., Bao, S., Yuan, J., 2022. Stiffness modeling of redundant robots with large load capacity and workspace. In: 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR). pp. 407-412. https://doi.org/10.1109/RCAR54675.2022.9872192 | es_ES |
dc.description.references | Liao, Z.-Y., Wang, Q.-H., Xie, H.-L., Li, J.-R., Zhou, X.-F., Pan, T.-H., 2022. Optimization of robot posture and workpiece setup in robotic milling with stiffness threshold. IEEE/ASME Transactions on Mechatronics 27 (1), 582-593. https://doi.org/10.1109/TMECH.2021.3068599 | es_ES |
dc.description.references | Lin, J., Ye, C., Yang, J., Zhao, H., Ding, H., Luo, M., 2022. Contour error-based optimization of the end-effector pose of a 6 degree-of-freedom serial robot in milling operation. Robotics and Computer-Integrated Manufacturing 73, 102257. https://doi.org/10.1016/j.rcim.2021.102257 | es_ES |
dc.description.references | Mohammadi, Y., Ahmadi, K., 2022. In-process frequency response function measurement for robotic milling. Experimental Techniques, 1747-1567. https://doi.org/10.1007/s40799-022-00590-5 | es_ES |
dc.description.references | Ozturk, E., Barrios, A., Sun, C., Rajabi, S., Munoa, J., 2018. Robotic assisted milling for increased productivity. CIRP Annals 67 (1), 427-430. https://doi.org/10.1016/j.cirp.2018.04.031 | es_ES |
dc.description.references | Qintao, C., Jizhi, Y., Shen, Y., Pengyu, L., 2019. Optimization of comprehensive stiffness performance index for industrial robot in milling process. In: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). pp. 609-614. https://doi.org/10.1109/CYBER46603.2019.9066502 | es_ES |
dc.description.references | Rao, A. B. K., Saha, S. K., Rao, P. V. M., 2005. Stiffness analysis of hexaslide machine tools. Advanced Robotics 19 (6), 671-693. https://doi.org/10.1163/1568553054255673 | es_ES |
dc.description.references | Shimizu, M., Kakuya, H., Yoon,W.-K., Kitagaki, K., Kosuge, K., 2008. Analytical inverse kinematic computation for 7-dof redundant manipulators with joint limits and its application to redundancy resolution. IEEE Transactions on Robotics 24 (5), 1131-1142. https://doi.org/10.1109/TRO.2008.2003266 | es_ES |
dc.description.references | Song, G., Su, S., Li, Y., Zhao, X., Du, H., Han, J., Zhao, Y., 2021. A closed-loop framework for the inverse kinematics of the 7 degrees of freedom manipulator. Robotica 39 (4), 572-581. https://doi.org/10.1017/S0263574720000582 | es_ES |
dc.description.references | Torres, R., González, S., Elguea, I., Aginaga, J., Iriarte, X., Agirre, N., Inziarte, I., 2020. Robotic assisted thin-wall machining with a collaborative robot. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). pp. 1505-1508. https://doi.org/10.1109/CASE48305.2020.9216864 | es_ES |
dc.description.references | Tsai, L. W., 1999. Robot Analysis: the Mechanics of Serial and Parallel Manipulators. John Willey and sons, New York. | es_ES |
dc.description.references | Xue, X., Zhang, C., Chen, Q., Xu, X., 2022. The posture optimization method based on deformation index in robotic milling process. The International Journal of Advanced Manufacturing Technology 121 (7), 4999-5014. https://doi.org/10.1007/s00170-022-09745-5 | es_ES |
dc.description.references | Zaplana, I., Claret, J. A., Basanez, L., 2018. An'alisis cinemático de robots manipuladores redundantes: aplicación a los robots Kuka LWR 4+ y ABB Yumi. Revista Iberoamerica de Automática e Informática Industrial 15 (2), 192-202. https://doi.org/10.4995/riai.2017.8822 | es_ES |
dc.description.references | Zaplana, I., Hadfield, H., Lasenby, J., 2022. Closed-form solutions for the inverse kinematics of serial robots using conformal geometric algebra. Mechanism and Machine Theory 173, 104835. https://doi.org/10.1016/j.mechmachtheory.2022.104835 | es_ES |
dc.description.references | Zhang, H., Cheng, G., Chen, S., Guo, F., Shan, X., 2018. Stiffness modeling and performance evaluation of 2(3hus +s) parallel manipulator. In: 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). pp. 456-461. https://doi.org/10.1109/ICARM.2018.8610777 | es_ES |
dc.description.references | Zhao, J., Duan, Y., Xie, B., Zhang, Z., 2021. Fsw robot system dimensional optimization and trajectory planning based on soft stiffness indices. Journal of Manufacturing Processes 63, 88-97, trends in Intelligentizing Robotic Welding Processes. https://doi.org/10.1016/j.jmapro.2020.05.004 | es_ES |
dc.description.references | Zhao, X., Tao, B., Qian, L., Yang, Y., Ding, H., 2020. Asymmetrical nonlinear impedance control for dual robotic machining of thin-walled workpieces. Robotics and Computer-Integrated Manufacturing 63, 101889. https://doi.org/10.1016/j.rcim.2019.101889 | es_ES |