- -

Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas

Mostrar el registro completo del ítem

Aginaga, J.; García-Cuesta, I.; Iriarte, X.; Plaza, A. (2023). Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas. Revista Iberoamericana de Automática e Informática industrial. 20(3):259-268. https://doi.org/10.4995/riai.2023.18977

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194760

Ficheros en el ítem

Metadatos del ítem

Título: Trayectorias de máxima rigidez de un robot redundante actuando como soporte en el mecanizado de paredes delgadas
Otro titulo: Maximum stiffness trajectories of a redundant robot acting as a support in thin-wall machining
Autor: Aginaga, Jokin García-Cuesta, Iván Iriarte, Xabier Plaza, Aitor
Fecha difusión:
Resumen:
[EN] The precision of a robot is linked to its stiffness. Compared with traditional machine tools, industrial robots have large workspace as an advantage, but low stiffness as a disadvantage. Furthermore, stiffness has a ...[+]


[ES] La precisión de un robot está ligada a su rigidez. En comparación con la máquina herramienta tradicional, los robots industriales tienen un gran espacio de trabajo como ventaja, pero una rigidez reducida como desventaja. ...[+]
Palabras clave: Industrial robotics , Redundant degree of freedom , Stiffness , Pose optimization , Performance index , Robótica industrial , Grado de libertad redundante , Rigidez , Optimización de postura , Índice de comportamiento
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.18977
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2023.18977
Código del Proyecto:
info:eu-repo/grantAgreement/Gobierno de Navarra//0011-1365-2021-000080/ES
Agradecimientos:
Este trabajo ha contado con la financiación de la “Convocatoria de ayudas a proyectos de I+D del Gobierno de Navarra”, bajo el proyecto con Ref. 0011-1365-2021-000080.
Tipo: Artículo

References

Aginaga, J., Zabalza, I., Altuzarra, O., Nájera, J., 2012. Improving static stiffness of the 6-rus parallel manipulator using inverse singularities. Robotics and Computer Integrated Manufacturing 28, 458-471. https://doi.org/10.1016/j.rcim.2012.02.003

Angeles, J., 2010. On the nature of the cartesian stiffness matrix. Ingeniería Mecánica 3 (5), 163-170.

Azulay, H., Mahmoodi, M., Zhao, R., Mills, J. K., Benhabib, B., 2014. Comparative analysis of a new 3×PPRS parallel kinematic mechanism. Robotics and Computer-Integrated Manufacturing 30 (4), 369-378. https://doi.org/10.1016/j.rcim.2013.12.003 [+]
Aginaga, J., Zabalza, I., Altuzarra, O., Nájera, J., 2012. Improving static stiffness of the 6-rus parallel manipulator using inverse singularities. Robotics and Computer Integrated Manufacturing 28, 458-471. https://doi.org/10.1016/j.rcim.2012.02.003

Angeles, J., 2010. On the nature of the cartesian stiffness matrix. Ingeniería Mecánica 3 (5), 163-170.

Azulay, H., Mahmoodi, M., Zhao, R., Mills, J. K., Benhabib, B., 2014. Comparative analysis of a new 3×PPRS parallel kinematic mechanism. Robotics and Computer-Integrated Manufacturing 30 (4), 369-378. https://doi.org/10.1016/j.rcim.2013.12.003

Bu, Y., Liao, W., Tian, W., Zhang, J., Zhang, L., 2017. Stiffness analysis and optimization in robotic drilling application. Precision Engineering 49, 388- 400. https://doi.org/10.1016/j.precisioneng.2017.04.001

Chen, C., Peng, F., Yan, R., Li, Y., Wei, D., Fan, Z., Tang, X., Zhu, Z., 2019. Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robotics and Computer-Integrated Manufacturing 55, 29-40. https://doi.org/10.1016/j.rcim.2018.07.003

Cvitanic, T., Nguyen, V., Melkote, S., 2020. Pose optimization in robotic machining usieng static and dynamic stiffness models. Robotics and Computer Integrated Manufacturing 66, 101992. https://doi.org/10.1016/j.rcim.2020.101992

Díaz-Cano, I., Quintana, F. M., Galindo, P. L., Morgado-Estevez, A., 2022. Calibraci'on ojo a mano de un brazo robótico industrial con cámaras 3d de luz estructurada. Revista Iberoamerica de Automática e Informática Industrial 19 (2), 154-163. https://doi.org/10.4995/riai.2021.16054

Denavit, J., Hartenberg, R. S., 1955. A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics 22 (2), 215-221. https://doi.org/10.1115/1.4011045

Guo, Y., Dong, H., Ke, Y., 2015. Stiffness-oriented posture optimization in robotic machining applications. Robotics and Computer-Integrated Manufacturing 35, 69-76. https://doi.org/10.1016/j.rcim.2015.02.006

Herranz, S., Campa, F. J., de Lacalle, L. N. L., Rivero, A., Lamikiz, A., Ukar, E., Sánchez, J. A., Bravo, U., 2005. The milling of airframe components with low rigidity: A general approach to avoid static and dynamic problems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219 (11), 789-801. https://doi.org/10.1243/095440505X32742

Léger, J., Angeles, J., 2016. Off-line programming of six-axis robots for optimum five-dimensional tasks. Mechanism and Machine Theory 100, 155-169. https://doi.org/10.1016/j.mechmachtheory.2016.01.015

Li, M., Hu, X., Du, L., Bao, S., Yuan, J., 2022. Stiffness modeling of redundant robots with large load capacity and workspace. In: 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR). pp. 407-412. https://doi.org/10.1109/RCAR54675.2022.9872192

Liao, Z.-Y., Wang, Q.-H., Xie, H.-L., Li, J.-R., Zhou, X.-F., Pan, T.-H., 2022. Optimization of robot posture and workpiece setup in robotic milling with stiffness threshold. IEEE/ASME Transactions on Mechatronics 27 (1), 582-593. https://doi.org/10.1109/TMECH.2021.3068599

Lin, J., Ye, C., Yang, J., Zhao, H., Ding, H., Luo, M., 2022. Contour error-based optimization of the end-effector pose of a 6 degree-of-freedom serial robot in milling operation. Robotics and Computer-Integrated Manufacturing 73, 102257. https://doi.org/10.1016/j.rcim.2021.102257

Mohammadi, Y., Ahmadi, K., 2022. In-process frequency response function measurement for robotic milling. Experimental Techniques, 1747-1567. https://doi.org/10.1007/s40799-022-00590-5

Ozturk, E., Barrios, A., Sun, C., Rajabi, S., Munoa, J., 2018. Robotic assisted milling for increased productivity. CIRP Annals 67 (1), 427-430. https://doi.org/10.1016/j.cirp.2018.04.031

Qintao, C., Jizhi, Y., Shen, Y., Pengyu, L., 2019. Optimization of comprehensive stiffness performance index for industrial robot in milling process. In: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). pp. 609-614. https://doi.org/10.1109/CYBER46603.2019.9066502

Rao, A. B. K., Saha, S. K., Rao, P. V. M., 2005. Stiffness analysis of hexaslide machine tools. Advanced Robotics 19 (6), 671-693. https://doi.org/10.1163/1568553054255673

Shimizu, M., Kakuya, H., Yoon,W.-K., Kitagaki, K., Kosuge, K., 2008. Analytical inverse kinematic computation for 7-dof redundant manipulators with joint limits and its application to redundancy resolution. IEEE Transactions on Robotics 24 (5), 1131-1142. https://doi.org/10.1109/TRO.2008.2003266

Song, G., Su, S., Li, Y., Zhao, X., Du, H., Han, J., Zhao, Y., 2021. A closed-loop framework for the inverse kinematics of the 7 degrees of freedom manipulator. Robotica 39 (4), 572-581. https://doi.org/10.1017/S0263574720000582

Torres, R., González, S., Elguea, I., Aginaga, J., Iriarte, X., Agirre, N., Inziarte, I., 2020. Robotic assisted thin-wall machining with a collaborative robot. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). pp. 1505-1508. https://doi.org/10.1109/CASE48305.2020.9216864

Tsai, L. W., 1999. Robot Analysis: the Mechanics of Serial and Parallel Manipulators. John Willey and sons, New York.

Xue, X., Zhang, C., Chen, Q., Xu, X., 2022. The posture optimization method based on deformation index in robotic milling process. The International Journal of Advanced Manufacturing Technology 121 (7), 4999-5014. https://doi.org/10.1007/s00170-022-09745-5

Zaplana, I., Claret, J. A., Basanez, L., 2018. An'alisis cinemático de robots manipuladores redundantes: aplicación a los robots Kuka LWR 4+ y ABB Yumi. Revista Iberoamerica de Automática e Informática Industrial 15 (2), 192-202. https://doi.org/10.4995/riai.2017.8822

Zaplana, I., Hadfield, H., Lasenby, J., 2022. Closed-form solutions for the inverse kinematics of serial robots using conformal geometric algebra. Mechanism and Machine Theory 173, 104835. https://doi.org/10.1016/j.mechmachtheory.2022.104835

Zhang, H., Cheng, G., Chen, S., Guo, F., Shan, X., 2018. Stiffness modeling and performance evaluation of 2(3hus +s) parallel manipulator. In: 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). pp. 456-461. https://doi.org/10.1109/ICARM.2018.8610777

Zhao, J., Duan, Y., Xie, B., Zhang, Z., 2021. Fsw robot system dimensional optimization and trajectory planning based on soft stiffness indices. Journal of Manufacturing Processes 63, 88-97, trends in Intelligentizing Robotic Welding Processes. https://doi.org/10.1016/j.jmapro.2020.05.004

Zhao, X., Tao, B., Qian, L., Yang, Y., Ding, H., 2020. Asymmetrical nonlinear impedance control for dual robotic machining of thin-walled workpieces. Robotics and Computer-Integrated Manufacturing 63, 101889. https://doi.org/10.1016/j.rcim.2019.101889

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem