- -

Rediseño basado en la experiencia clínica de un andador robótico para la rehabilitación de fractura de cadera

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rediseño basado en la experiencia clínica de un andador robótico para la rehabilitación de fractura de cadera

Mostrar el registro completo del ítem

Costa, V.; Sánchez, C.; Perea, L.; Rocon, E.; Otero, A.; Raya, R. (2023). Rediseño basado en la experiencia clínica de un andador robótico para la rehabilitación de fractura de cadera. Revista Iberoamericana de Automática e Informática industrial. https://doi.org/10.4995/riai.2023.17839

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194802

Ficheros en el ítem

Metadatos del ítem

Título: Rediseño basado en la experiencia clínica de un andador robótico para la rehabilitación de fractura de cadera
Otro titulo: Redesign based on clinical experience of a robotic walker for hip fracture rehabilitation
Autor: Costa, Vanina Sánchez, Cristina Perea, Luis Rocon, Eduardo Otero, Abraham Raya, Rafael
Fecha difusión:
Resumen:
[ES] La fractura de cadera es una lesión frecuente en personas mayores de 65 años,estando asociada a una reducción en la esperanza de vida. Su rehabilitación se basa en la movilización gradual mediante terapia manual. Sin ...[+]


[EN] Hip fracture is a common injury in people over 65 years old, linked to a reduction in life expectancy. Rehabilitation is based on gradual mobilization through manual therapy. However, these treatments are not usually ...[+]
Palabras clave: Healthcare delivery , Rehabilitation engineering , Assistive technology , Robotics technology , Human-centered systems engineering , Mechatronics for mobility systems , Tecnología robótica , Ingeniería de sistemas centrados en el ser humano , Mecatrónica para sistemas de movilidad , Ingeniería de la rehabilitación , Prestación de asistencia sanitaria , Tecnología asistencial
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.17839
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2023.17839
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105110RB-C31/ES/DESARROLLO DE UNA PLATAFORMA ROBOTICA PARA AYUDAR A NIÑOS CON PARALISIS CEREBRAL A DESCUBRIR COMO CAMINAR/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097122-A-I00/ES/DESARROLLO DE UN EXOESQUELETO PASIVO PARA REHABILITACION Y EVALUACION DE LA TERAPIA DE MIEMBRO SUPERIOR EN PARALISIS CEREBRAL/
Agradecimientos:
Los autores agradecen al Grupo Albertia su colaboración en este proyecto y al equipo de Josman Soluciones Técnicas por su contribución en el rediseño y fabricación del dispositivo. Este trabajo fue financiado por el Centro ...[+]
Tipo: Artículo

References

Abrahamsen, B. et al., 2009. Excess mortality following hip fracture: A syste-atic epidemiological review. Osteoporosis International 20:1633-1650. https://doi.org/10.1007/s00198-009-0920-3

Andres Camilo, M. B., 2010. Validación de la versión en español de la evaluación de QUEBEC de usuarios con tecnología de asistencia (QUEST 2.0).

Bach Baunsgaard, C. et al., 2018. Gait training after spinal cord injury: Safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionicsarticle. Spinal Cord 56:106-116. https://doi.org/10.1038/s41393-017-0013-7 [+]
Abrahamsen, B. et al., 2009. Excess mortality following hip fracture: A syste-atic epidemiological review. Osteoporosis International 20:1633-1650. https://doi.org/10.1007/s00198-009-0920-3

Andres Camilo, M. B., 2010. Validación de la versión en español de la evaluación de QUEBEC de usuarios con tecnología de asistencia (QUEST 2.0).

Bach Baunsgaard, C. et al., 2018. Gait training after spinal cord injury: Safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionicsarticle. Spinal Cord 56:106-116. https://doi.org/10.1038/s41393-017-0013-7

La Bara, L. M. A. et al., 2021. Assessment methods of usability and cognitive workload of rehabilitative exoskeletons: A systematic review. Applied Sciences (Switzerland) 11. https://doi.org/10.3390/app11157146

Bayón, C. et al., 2017. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robotics and Autonomous Systems 91:101-114. https://doi.org/10.1016/j.robot.2016.12.015

Cardona, M. et al., 2021. El exoesqueleto de rehabilitación de la marcha ALICE: análisis dinámico y evaluación del sistema de control utilizando cuaternios de Hamilton. Revista Iberoamericana de Automática e Informática industrial 18:48-57. https://doi.org/10.4995/riai.2020.12558

Chen, G. et al., 2013. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Critical Reviews in Biomedical Engineering 41:343-363. https://doi.org/10.1615/CritRevBiomedEng.2014010453

Chesser, T. J. S. et al., 2020. Hip fracture systems-European experience. OTA International: The Open Access Journal of Orthopaedic Trauma 3:e050. https://doi.org/10.1097/OI9.0000000000000050

Chudyk, A. M. et al., 2009. Systematic Review of Hip Fracture Rehabilitation Practices in the Elderly. Archives of Physical Medicine and Rehabilitation 90:246-262. https://doi.org/10.1016/j.apmr.2008.06.036

Colombo, G. et al., 2000. Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development 37:693-700.

Cooper, C., Campion, G., Melton, L. J., 1992. Hip fractures in the elderly: A world-wide projection. Osteoporosis International 2:285-289. https://doi.org/10.1007/BF01623184

Costa, V. et al., 2020. Design of a robotic platform for hip fracture rehabilitation in elderly people. In: Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE Computer Society, 599-604. https://doi.org/10.1109/BioRob49111.2020.9224320

Costa, V. et al., 2022. Development and Clinical Validation of a Rehabilitation Platform for Hip Fracture in Elderly Population. 30:1340-1349. https://doi.org/10.1109/TNSRE.2022.3175688

Demers, L. et al., 1996. Development of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST). Assistive Technology 8:3-13. https://doi.org/10.1080/10400435.1996.10132268

Dijkers, M. P. et al., 2021. Systematic Reviews of Clinical Benefits of Exoskeleton Use for Gait and Mobility in Neurologic Disorders: A Tertiary Study. Archives of physical medicine and rehabilitation 102:300-313. https://doi.org/10.1016/j.apmr.2019.01.025

Dyer, S. M. et al., 2016. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatrics 16. https://doi.org/10.1186/s12877-016-0332-0

Farzaneh, M. M., 2021. A Review Study on the Design of an Exoskeleton Robot. International Journal of Scientific and Technical Research in Engineering 6:10-17.

Fernández-García, M. et al., 2015. Revisión de la incidencia de la fractura de cadera en España. Revista de Osteoporosis y Metabolismo Mineral 7:115-120. https://doi.org/10.4321/S1889-836X2015000400007

Gorgey, A. S., 2018. Robotic exoskeletons: The current pros and cons. World Journal of Orthopedics 9:112. https://doi.org/10.5312/wjo.v9.i9.112

Guzon-Illescas, O. et al., 2019. Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors. Journal of Orthopaedic Surgery and Research 14. https://doi.org/10.1186/s13018-019-1226-6

Hasan, S. K., Dhingra, A. K., 2020. State of the Art Technologies for Exoskeleton Human Lower Extremity Rehabilitation Robots. Journal of Mechatronics and Robotics 4:211-235. https://doi.org/10.3844/jmrsp.2020.211.235

van Hedel, H. J. A., Rosselli, I., Baumgartner-Ricklin, S., 2021. Clinical utility of the over-ground bodyweight-supporting walking system Andago in children and youths with gait impairments. Journal of NeuroEngineering and Rehabilitation 2021 18:1 18:1-20. https://doi.org/10.1186/s12984-021-00827-1

Hollman, J. H., Mcdade, E. M., Petersen, R. C., 2011. Gait & Posture Normative spatiotemporal gait parameters in older adults. Gait & Posture 34:111-118. https://doi.org/10.1016/j.gaitpost.2011.03.024

Kao, P. C. et al., 2013. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals. Gait and Posture 37:113-120. https://doi.org/10.1016/j.gaitpost.2012.06.025

Kapsalyamov, A. et al., 2019. State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance. IEEE Access 7:95075-95086. https://doi.org/10.1109/ACCESS.2019.2928010

Kawamoto, H., Sankai, Y., 2002. Comfortable power assist control method for walking aid by HAL-3. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 4:447-452. https://doi.org/10.1109/ICSMC.2002.1173328

Leal, J. et al., 2016. Impact of hip fracture on hospital care costs: a population-based study. Osteoporosis International 27:549-558. https://doi.org/10.1007/s00198-015-3277-9

Lee, H., Ferguson, P.W., Rosen, J., 2019. Lower limb exoskeleton systems-overview. Wearable Robotics: Systems and Applications:207-229. https://doi.org/10.1016/B978-0-12-814659-0.00011-4

Machida, M. et al., 2011. Epidemiology of hip fractures. IRYO - Japanese Journal of National Medical Services 65:432-439. https://doi.org/10.4055/jkoa.1993.28.3.1153

Parker, M., Johansen, A., 2006. Hip fracture. British Medical Journal 333:27-30. https://doi.org/10.1136/bmj.333.7557.27

Pils, K. et al., 2011. Risk assessment after hip fracture. Zeitschrift für Gerontologie und Geriatrie 44:375-380. https://doi.org/10.1007/s00391-011-0256-4

Sanchez-Villamañan, M. D. C. et al., 2019. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. Journal of NeuroEngineering and Rehabilitation 16. https://doi.org/10.1186/s12984-019-0517-9

Shi, D. et al., 2019. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering (English Edition) 32. https://doi.org/10.1186/s10033-019-0389-8

Stauffer, Y. et al., 2009. The WalkTrainer - A new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17:38-45. https://doi.org/10.1109/TNSRE.2008.2008288

Subramaniyam, M. et al., 2020. Assistive technologies for elderly - review on recent developments in lower limb and back pain management. Advances in Intelligent Systems and Computing 972:824-830. https://doi.org/10.1007/978-3-030-19135-1_80

Veneman, J. F. et al., 2007. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15:379-386. https://doi.org/10.1109/TNSRE.2007.903919

Veronese, N., Maggi, S., 2018. Epidemiology and social costs of hip fracture. Injury 49:1458-1460. https://doi.org/10.1016/j.injury.2018.04.015

Zeilig, G. et al., 2012. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. The Journal of Spinal Cord Medicine 35:96. https://doi.org/10.1179/2045772312Y.0000000003

Zhou, J., Yang, S., Xue, Q., 2021. Lower limb rehabilitation exoskeleton robot: A review. Advances in Mechanical Engineering 13:1-17. https://doi.org/10.1177/16878140211011862

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem