Mostrar el registro sencillo del ítem
dc.contributor.author | Costa, Vanina | es_ES |
dc.contributor.author | Sánchez, Cristina | es_ES |
dc.contributor.author | Perea, Luis | es_ES |
dc.contributor.author | Rocon, Eduardo | es_ES |
dc.contributor.author | Otero, Abraham | es_ES |
dc.contributor.author | Raya, Rafael | es_ES |
dc.date.accessioned | 2023-07-11T07:04:00Z | |
dc.date.available | 2023-07-11T07:04:00Z | |
dc.date.issued | 2023-01-24 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/194802 | |
dc.description.abstract | [ES] La fractura de cadera es una lesión frecuente en personas mayores de 65 años,estando asociada a una reducción en la esperanza de vida. Su rehabilitación se basa en la movilización gradual mediante terapia manual. Sin embargo, estos tratamientos no suelen ser integrales, constan de ejercicios repetitivos, resultan monótonos para el pacientey su seguimientoes principalmente cualitativo. SWalker es un andador robótico basado en un sistema de tracción y de soporte de peso, que integra sensores de marcha. Con una primera versión de este andador se llevó a cabo un estudio clínico que involucró 34 pacientes. A partir de esta experiencia se han extraído los requisitos de diseño que se consideran claves para el desarrollo de este tipo de dispositivos. Sobre la base de estos requisitos se ha construido una segunda versión del andador en la que se ha validado su usabilidad con 5 pacientes. Empleando la escala QUEST 2.0 se han comparado ambas versiones del andador, mostrando mejoras en la segunda versión en seguridad, adaptabilidad y usabilidad | es_ES |
dc.description.abstract | [EN] Hip fracture is a common injury in people over 65 years old, linked to a reduction in life expectancy. Rehabilitation is based on gradual mobilization through manual therapy. However, these treatments are not usually integrative, they consist of repetitive exercises that are not motivating for the patient and their follow-up is mainly qualitative. SWalker is a robotic platform based on a traction and weight-bearing system that integrates gait sensors. A clinical study involving 34 patients was conducted with a first version of this walker. From this experience, the key design requirements for the development of this type of device were gathered. Based on these requirements, a second version of the walker was built and its usability was validated with 5 patients. Using the QUEST 2.0 scale, both versions of the walker were compared, showing improvements in safety, adaptability, and usability in the second version. | es_ES |
dc.description.sponsorship | Los autores agradecen al Grupo Albertia su colaboración en este proyecto y al equipo de Josman Soluciones Técnicas por su contribución en el rediseño y fabricación del dispositivo. Este trabajo fue financiado por el Centro para el Desarrollo Tecnológico Industrial (CDTI) del Ministerio de Ciencia e Innovación, Gobierno de España bajo el proyecto SWALKERS17 concedido en 2018 y el proyecto de referencia IDI-20220400 (SWALKERS II) concedido en 2021.También por el Gobierno de España (Proyectos RTI2018-097122-A-I00 y PID2019-105110RB-C31, financiados por FEDER/Ministerio de Ciencia e Innovación/AEI) | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Healthcare delivery | es_ES |
dc.subject | Rehabilitation engineering | es_ES |
dc.subject | Assistive technology | es_ES |
dc.subject | Robotics technology | es_ES |
dc.subject | Human-centered systems engineering | es_ES |
dc.subject | Mechatronics for mobility systems | es_ES |
dc.subject | Tecnología robótica | es_ES |
dc.subject | Ingeniería de sistemas centrados en el ser humano | es_ES |
dc.subject | Mecatrónica para sistemas de movilidad | es_ES |
dc.subject | Ingeniería de la rehabilitación | es_ES |
dc.subject | Prestación de asistencia sanitaria | es_ES |
dc.subject | Tecnología asistencial | es_ES |
dc.title | Rediseño basado en la experiencia clínica de un andador robótico para la rehabilitación de fractura de cadera | es_ES |
dc.title.alternative | Redesign based on clinical experience of a robotic walker for hip fracture rehabilitation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2023.17839 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105110RB-C31/ES/DESARROLLO DE UNA PLATAFORMA ROBOTICA PARA AYUDAR A NIÑOS CON PARALISIS CEREBRAL A DESCUBRIR COMO CAMINAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097122-A-I00/ES/DESARROLLO DE UN EXOESQUELETO PASIVO PARA REHABILITACION Y EVALUACION DE LA TERAPIA DE MIEMBRO SUPERIOR EN PARALISIS CEREBRAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Costa, V.; Sánchez, C.; Perea, L.; Rocon, E.; Otero, A.; Raya, R. (2023). Rediseño basado en la experiencia clínica de un andador robótico para la rehabilitación de fractura de cadera. Revista Iberoamericana de Automática e Informática industrial. https://doi.org/10.4995/riai.2023.17839 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2023.17839 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\17839 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Abrahamsen, B. et al., 2009. Excess mortality following hip fracture: A syste-atic epidemiological review. Osteoporosis International 20:1633-1650. https://doi.org/10.1007/s00198-009-0920-3 | es_ES |
dc.description.references | Andres Camilo, M. B., 2010. Validación de la versión en español de la evaluación de QUEBEC de usuarios con tecnología de asistencia (QUEST 2.0). | es_ES |
dc.description.references | Bach Baunsgaard, C. et al., 2018. Gait training after spinal cord injury: Safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionicsarticle. Spinal Cord 56:106-116. https://doi.org/10.1038/s41393-017-0013-7 | es_ES |
dc.description.references | La Bara, L. M. A. et al., 2021. Assessment methods of usability and cognitive workload of rehabilitative exoskeletons: A systematic review. Applied Sciences (Switzerland) 11. https://doi.org/10.3390/app11157146 | es_ES |
dc.description.references | Bayón, C. et al., 2017. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robotics and Autonomous Systems 91:101-114. https://doi.org/10.1016/j.robot.2016.12.015 | es_ES |
dc.description.references | Cardona, M. et al., 2021. El exoesqueleto de rehabilitación de la marcha ALICE: análisis dinámico y evaluación del sistema de control utilizando cuaternios de Hamilton. Revista Iberoamericana de Automática e Informática industrial 18:48-57. https://doi.org/10.4995/riai.2020.12558 | es_ES |
dc.description.references | Chen, G. et al., 2013. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Critical Reviews in Biomedical Engineering 41:343-363. https://doi.org/10.1615/CritRevBiomedEng.2014010453 | es_ES |
dc.description.references | Chesser, T. J. S. et al., 2020. Hip fracture systems-European experience. OTA International: The Open Access Journal of Orthopaedic Trauma 3:e050. https://doi.org/10.1097/OI9.0000000000000050 | es_ES |
dc.description.references | Chudyk, A. M. et al., 2009. Systematic Review of Hip Fracture Rehabilitation Practices in the Elderly. Archives of Physical Medicine and Rehabilitation 90:246-262. https://doi.org/10.1016/j.apmr.2008.06.036 | es_ES |
dc.description.references | Colombo, G. et al., 2000. Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development 37:693-700. | es_ES |
dc.description.references | Cooper, C., Campion, G., Melton, L. J., 1992. Hip fractures in the elderly: A world-wide projection. Osteoporosis International 2:285-289. https://doi.org/10.1007/BF01623184 | es_ES |
dc.description.references | Costa, V. et al., 2020. Design of a robotic platform for hip fracture rehabilitation in elderly people. In: Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE Computer Society, 599-604. https://doi.org/10.1109/BioRob49111.2020.9224320 | es_ES |
dc.description.references | Costa, V. et al., 2022. Development and Clinical Validation of a Rehabilitation Platform for Hip Fracture in Elderly Population. 30:1340-1349. https://doi.org/10.1109/TNSRE.2022.3175688 | es_ES |
dc.description.references | Demers, L. et al., 1996. Development of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST). Assistive Technology 8:3-13. https://doi.org/10.1080/10400435.1996.10132268 | es_ES |
dc.description.references | Dijkers, M. P. et al., 2021. Systematic Reviews of Clinical Benefits of Exoskeleton Use for Gait and Mobility in Neurologic Disorders: A Tertiary Study. Archives of physical medicine and rehabilitation 102:300-313. https://doi.org/10.1016/j.apmr.2019.01.025 | es_ES |
dc.description.references | Dyer, S. M. et al., 2016. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatrics 16. https://doi.org/10.1186/s12877-016-0332-0 | es_ES |
dc.description.references | Farzaneh, M. M., 2021. A Review Study on the Design of an Exoskeleton Robot. International Journal of Scientific and Technical Research in Engineering 6:10-17. | es_ES |
dc.description.references | Fernández-García, M. et al., 2015. Revisión de la incidencia de la fractura de cadera en España. Revista de Osteoporosis y Metabolismo Mineral 7:115-120. https://doi.org/10.4321/S1889-836X2015000400007 | es_ES |
dc.description.references | Gorgey, A. S., 2018. Robotic exoskeletons: The current pros and cons. World Journal of Orthopedics 9:112. https://doi.org/10.5312/wjo.v9.i9.112 | es_ES |
dc.description.references | Guzon-Illescas, O. et al., 2019. Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors. Journal of Orthopaedic Surgery and Research 14. https://doi.org/10.1186/s13018-019-1226-6 | es_ES |
dc.description.references | Hasan, S. K., Dhingra, A. K., 2020. State of the Art Technologies for Exoskeleton Human Lower Extremity Rehabilitation Robots. Journal of Mechatronics and Robotics 4:211-235. https://doi.org/10.3844/jmrsp.2020.211.235 | es_ES |
dc.description.references | van Hedel, H. J. A., Rosselli, I., Baumgartner-Ricklin, S., 2021. Clinical utility of the over-ground bodyweight-supporting walking system Andago in children and youths with gait impairments. Journal of NeuroEngineering and Rehabilitation 2021 18:1 18:1-20. https://doi.org/10.1186/s12984-021-00827-1 | es_ES |
dc.description.references | Hollman, J. H., Mcdade, E. M., Petersen, R. C., 2011. Gait & Posture Normative spatiotemporal gait parameters in older adults. Gait & Posture 34:111-118. https://doi.org/10.1016/j.gaitpost.2011.03.024 | es_ES |
dc.description.references | Kao, P. C. et al., 2013. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals. Gait and Posture 37:113-120. https://doi.org/10.1016/j.gaitpost.2012.06.025 | es_ES |
dc.description.references | Kapsalyamov, A. et al., 2019. State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance. IEEE Access 7:95075-95086. https://doi.org/10.1109/ACCESS.2019.2928010 | es_ES |
dc.description.references | Kawamoto, H., Sankai, Y., 2002. Comfortable power assist control method for walking aid by HAL-3. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 4:447-452. https://doi.org/10.1109/ICSMC.2002.1173328 | es_ES |
dc.description.references | Leal, J. et al., 2016. Impact of hip fracture on hospital care costs: a population-based study. Osteoporosis International 27:549-558. https://doi.org/10.1007/s00198-015-3277-9 | es_ES |
dc.description.references | Lee, H., Ferguson, P.W., Rosen, J., 2019. Lower limb exoskeleton systems-overview. Wearable Robotics: Systems and Applications:207-229. https://doi.org/10.1016/B978-0-12-814659-0.00011-4 | es_ES |
dc.description.references | Machida, M. et al., 2011. Epidemiology of hip fractures. IRYO - Japanese Journal of National Medical Services 65:432-439. https://doi.org/10.4055/jkoa.1993.28.3.1153 | es_ES |
dc.description.references | Parker, M., Johansen, A., 2006. Hip fracture. British Medical Journal 333:27-30. https://doi.org/10.1136/bmj.333.7557.27 | es_ES |
dc.description.references | Pils, K. et al., 2011. Risk assessment after hip fracture. Zeitschrift für Gerontologie und Geriatrie 44:375-380. https://doi.org/10.1007/s00391-011-0256-4 | es_ES |
dc.description.references | Sanchez-Villamañan, M. D. C. et al., 2019. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. Journal of NeuroEngineering and Rehabilitation 16. https://doi.org/10.1186/s12984-019-0517-9 | es_ES |
dc.description.references | Shi, D. et al., 2019. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering (English Edition) 32. https://doi.org/10.1186/s10033-019-0389-8 | es_ES |
dc.description.references | Stauffer, Y. et al., 2009. The WalkTrainer - A new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17:38-45. https://doi.org/10.1109/TNSRE.2008.2008288 | es_ES |
dc.description.references | Subramaniyam, M. et al., 2020. Assistive technologies for elderly - review on recent developments in lower limb and back pain management. Advances in Intelligent Systems and Computing 972:824-830. https://doi.org/10.1007/978-3-030-19135-1_80 | es_ES |
dc.description.references | Veneman, J. F. et al., 2007. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15:379-386. https://doi.org/10.1109/TNSRE.2007.903919 | es_ES |
dc.description.references | Veronese, N., Maggi, S., 2018. Epidemiology and social costs of hip fracture. Injury 49:1458-1460. https://doi.org/10.1016/j.injury.2018.04.015 | es_ES |
dc.description.references | Zeilig, G. et al., 2012. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. The Journal of Spinal Cord Medicine 35:96. https://doi.org/10.1179/2045772312Y.0000000003 | es_ES |
dc.description.references | Zhou, J., Yang, S., Xue, Q., 2021. Lower limb rehabilitation exoskeleton robot: A review. Advances in Mechanical Engineering 13:1-17. https://doi.org/10.1177/16878140211011862 | es_ES |