- -

Coeficientes de la superficie en modo deslizante directamente en la magnitud de control, un enfoque de esfuerzo reducido

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Coeficientes de la superficie en modo deslizante directamente en la magnitud de control, un enfoque de esfuerzo reducido

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acosta Cano de los Ríos, Pedro es_ES
dc.contributor.author Robledo-Vega, Isidro es_ES
dc.contributor.author Rodríguez-Mata, Abraham E. es_ES
dc.contributor.author Baray-Arana, Rogelio es_ES
dc.date.accessioned 2023-11-07T13:14:43Z
dc.date.available 2023-11-07T13:14:43Z
dc.date.issued 2023-09-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/199438
dc.description.abstract [EN] A design procedure is presented for first order sliding mode control applied to a system in form of a pure or perturbed chain of integrators (perturbed controllable canonical form). The control law is proposed in a novel way. The control magnitude is directly defined by the sliding surface polynomial coefficients. It is shown that this procedure minimizes in a given sense the control effort for reaching the designed surface. Calculations are even simpler than those in sliding mode classical techniques. Moreover, choosing a stable dynamical surface warranties a finite reaching time to it. Control effort and chattering are low. Under given conditions of the surface reaching phase, advantage is taken of known perturbations and terms leading to instability. Simulations are given illustrating the results and comparing the behavior of some sliding mode methods in the literature to the one here proposed. es_ES
dc.description.abstract [ES] Se presenta un procedimiento de diseño para el control en modo deslizante de primer orden aplicado a un sistema en forma de cadena de integradores pura o perturbada, (forma canónica controlable perturbada). La ley de control se propone de forma novedosa. La magnitud de control se define directamente por los coeficientes del polinomio de la superficie  de deslizamiento. Se muestra que este procedimiento minimiza en cierto sentido el esfuerzo de control para alcanzar la superficie diseñada. Los cálculos son aún más sencillos que los de las técnicas clásicas en modo deslizante. Además, la elección de una dinámica de superficie estable garantiza un tiempo de alcance finito a la misma. El esfuerzo de control y el castañeteo (chattering) son bajos. Las perturbaciones y términos conocidos que provocan inestabilidad se aprovechan en ciertas condiciones del alcance a la superficie. Se presentan simulaciones que ilustran los resultados y comparando el comportamiento de métodos de control en modo deslizante existentes en la literatura con el propuesto en este artículo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Control effort es_ES
dc.subject Chain of integrators es_ES
dc.subject Perturbation rejection es_ES
dc.subject Chattering es_ES
dc.subject Control en modo deslizante es_ES
dc.subject Cadena de integradores es_ES
dc.subject Rechazo a perturbaciones es_ES
dc.subject Castañeteo es_ES
dc.subject Esfuerzo de control es_ES
dc.subject Sliding mode control es_ES
dc.title Coeficientes de la superficie en modo deslizante directamente en la magnitud de control, un enfoque de esfuerzo reducido es_ES
dc.title.alternative Sliding mode surface coefficients directly in the control magnitude, a reduced effort approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.17980
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Acosta Cano De Los Ríos, P.; Robledo-Vega, I.; Rodríguez-Mata, AE.; Baray-Arana, R. (2023). Coeficientes de la superficie en modo deslizante directamente en la magnitud de control, un enfoque de esfuerzo reducido. Revista Iberoamericana de Automática e Informática industrial. 20(4):355-365. https://doi.org/10.4995/riai.2023.17980 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.17980 es_ES
dc.description.upvformatpinicio 355 es_ES
dc.description.upvformatpfin 365 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\17980 es_ES
dc.description.references Acosta, P., 2014. Natural surface design for sliding mode control with multiple discontinuous inputs. Journal of the Franklin Institute 351 (8), 4198-4210. https://doi.org/10.1016/j.jfranklin.2014.04.023 es_ES
dc.description.references Adelipour, S., Ahi, B., Haeri, M., 2020. Dual-mode global stabilization of highorder saturated integrator chains: Lmi-based mpc combined with a nested saturated feedback. Nonlinear Dynamics 102 (1), 211-222. https://doi.org/10.1007/s11071-020-05957-0 es_ES
dc.description.references Amini, S., Ahi, B., Haeri, M., 2019. Control of high order integrator chain systems subjected to disturbance and saturated control: A new adaptive scheme. Automatica 100, 108-113. https://doi.org/10.1016/j.automatica.2018.10.039 es_ES
dc.description.references Bartolini, G., Pydynowski, P., 1996. An improved, chattering free, vsc scheme for uncertain dynamical systems. IEEE Transactions on Automatic Control 41 (8), 1220-1226. https://doi.org/10.1109/9.533691 es_ES
dc.description.references Chalanga, A., Kamal, S., Bandyopadhyay, B., 2014. A new algorithm for continuous sliding mode control with implementation to industrial emulator setup. IEEE/ASME Transactions on Mechatronics 20 (5), 2194-2204. https://doi.org/10.1109/TMECH.2014.2368717 es_ES
dc.description.references Chitour, Y., Ushirobira, R., Bouhemou, H., 2020. Stabilization for a perturbed chain of integrators in prescribed time. SIAM Journal on Control and Optimization 58 (2), 1022-1048. https://doi.org/10.1137/19M1285937 es_ES
dc.description.references Fridman, L., Moreno, J. A., Bandyopadhyay, B., Kamal, S., Chalanga, A., 2015. Continuous nested algorithms: The fifth generation of sliding mode. https://doi.org/10.1007/978-3-319-18290-2_2 es_ES
dc.description.references Hong, Y., 2002. Finite-time stabilization and stabilizability of a class of controlable systems. Systems & control letters 46 (4), 231-236. https://doi.org/10.1016/S0167-6911(02)00119-6 es_ES
dc.description.references Hong, Y., Yang, G., Cheng, D., Spurgeon, S., 2005. A new approach to terminal sliding mode control design. Asian Journal of Control 7 (2), 177-181. https://doi.org/10.1111/j.1934-6093.2005.tb00386.x es_ES
dc.description.references Hu, J., Zhang, H., Liu, H., Yu, X., 2021. A survey on sliding mode control for networked control systems. International Journal of Systems Science 52 (6), 1129-1147. https://doi.org/10.1080/00207721.2021.1885082 es_ES
dc.description.references Kamal, S., Bandyopadhyay, B., 2012. Arbitrary higher order sliding mode control based on control lyapunov approach. En: 2012 12th International Workshop on Variable Structure Systems. IEEE, pp. 446-451. https://doi.org/10.1109/VSS.2012.6163543 es_ES
dc.description.references Laghrouche, S., Harmouche, M., Chitour, Y., 2017. Higher order super-twisting for perturbed chains of integrators. IEEE Transactions on Automatic Control 62 (7), 3588-3593. https://doi.org/10.1109/TAC.2017.2670918 es_ES
dc.description.references Levant, A., 1993. Sliding order and sliding accuracy in sliding mode control. International journal of control 58 (6), 1247-1263. https://doi.org/10.1080/00207179308923053 es_ES
dc.description.references Levant, A., 2001. Universal single-input-single-output (siso) sliding-mode controllers with finite-time convergence. IEEE transactions on Automatic Control 46 (9), 1447-1451. https://doi.org/10.1109/9.948475 es_ES
dc.description.references Liu, X., Han, Y., 2014. Finite time control for mimo nonlinear system based on higher-order sliding mode. ISA transactions 53 (6), 1838-1846. https://doi.org/10.1016/j.isatra.2014.09.002 es_ES
dc.description.references Plestan, F., Glumineau, A., Laghrouche, S., 2008. A new algorithm for highorder sliding mode control. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 18 (4-5), 441-453. https://doi.org/10.1002/rnc.1234 es_ES
dc.description.references Riaz, U., Tayyeb, M., Amin, A. A., 2021. A review of sliding mode control with the perspective of utilization in fault tolerant control. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 14 (3), 312-324. https://doi.org/10.2174/2352096513999201120091512 es_ES
dc.description.references Ullah, N., Ali, M. A., Ibeas, A., Herrera, J., 2019. Control deslizante fraccionario de la trayectoria y orientación de un quadrotor con cargas suspendidas desconocidas. Revista Iberoamericana de Automática e Informática industrial 16 (3), 321-331. https://doi.org/10.4995/riai.2019.9951 es_ES
dc.description.references Utkin, V., 2015. Discussion aspects of high-order sliding mode control. IEEE Transactions on Automatic Control 61 (3), 829-833. https://doi.org/10.1109/TAC.2015.2450571 es_ES
dc.description.references Utkin, V., Guldner, J., Shi, J., 2017. Sliding mode control in electro-mechanical systems. CRC press. https://doi.org/10.1201/9781420065619 es_ES
dc.description.references Wang, X., Wang, G., Li, S., 2020. Distributed finite-time optimization for integrator chain multiagent systems with disturbances. IEEE Transactions on Automatic Control 65 (12), 5296-5311. https://doi.org/10.1109/TAC.2020.2979274 es_ES
dc.description.references Yu, X., Efe, O¨ .M. (Eds.), 2015. Recent advances in sliding modes: from control to intelligent mechatronics. Vol. 24. Springer. https://doi.org/10.1007/978-3-319-18290-2 es_ES
dc.description.references Zimenko, K., Polyakov, A., Efimo, D., Perruquetti, W., 2018. Finite-time and fixed-time stabilization for integrator chain of arbitrary order. En: 2018 European Control Conference (ECC). IEEE, pp. 1631-1635. https://doi.org/10.23919/ECC.2018.8550137 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem