- -

Generative Agents to support students learning progress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generative Agents to support students learning progress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Schacht, Sigurd es_ES
dc.contributor.author Kamath Barkur, Sudarshan es_ES
dc.contributor.author Lanquillon, Carsten es_ES
dc.date.accessioned 2024-07-18T07:54:39Z
dc.date.available 2024-07-18T07:54:39Z
dc.date.issued 2024-03-12
dc.identifier.isbn 9788413961569
dc.identifier.uri http://hdl.handle.net/10251/206325
dc.description.abstract [EN] Ongoing assessments in a course are crucial for tracking student performance and progress. However, generating and evaluating tests for each lesson and student can be time-consuming. Existing models for generating and evaluating question-answer pairs have had limited success. In recent years, large language models (LLMs) have become available as a service, offering more intelligent answering and evaluation capabilities. This research aims to leverage LLMs for generating questions, model answers, and evaluations while providing valuable feedback to students and decentralizing the dependency on faculty.We finetune existing LLMs and employ prompt engineering to direct the model toward specific tasks using different generative agents. One agent generates questions, another generates answers, and the third takes the human answers to evaluate and ensure the quality. Human evaluation is conducted through focus group analysis, and student progress and faculty feedback are tracked. Results demonstrate the potential of LLMs to provide automatic feedback and learning progress tracking for both students and faculty.In conclusion, this paper demonstrates the versatility of LLMs for various learning tasks, including question generation, model answer generation, and evaluation, all while providing personalized feedback to students. By identifying and addressing knowledge gaps, LLMs can support continuous evaluation and help students improve their understanding before semester exams. Furthermore, knowledge gaps from students identified by the agent can be highlighted and addressed through additional classes or support materials, potentially generated by the same model, leading to a more personalized learning experience. es_ES
dc.format.extent 19 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference. Business Meets Technology
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject LLM es_ES
dc.subject Question Generation es_ES
dc.subject Generative Agents es_ES
dc.subject Personalized Assessments es_ES
dc.title Generative Agents to support students learning progress es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/BMT2023.2023.16750
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Schacht, S.; Kamath Barkur, S.; Lanquillon, C. (2024). Generative Agents to support students learning progress. Editorial Universitat Politècnica de València. https://doi.org/10.4995/BMT2023.2023.16750 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 5th International Conference. Business Meets Technology es_ES
dc.relation.conferencedate Julio 13-15, 2023 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/BMT/BMT2023/paper/view/16750 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16750 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem