- -

Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain)

Mostrar el registro completo del ítem

Sanz, D.; Castano, S.; Cassiraga ., EF.; Sahuquillo Herráiz, A.; Gomez-Alday, J.; Peña Haro, S.; Calera, A. (2011). Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). HYDROGEOLOGY JOURNAL. 19(2):475-487. https://doi.org/10.1007/s10040-010-0694-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/30668

Ficheros en el ítem

Metadatos del ítem

Título: Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain)
Autor: Sanz, David Castano, Santiago Cassiraga ., Eduardo Fabián Sahuquillo Herráiz, Andrés Gomez-Alday, J.J. Peña Haro, Salvador Calera, Alfonso
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
The Mancha Oriental System (MOS, 7,260 km2) is one of the largest aquifers within Spain, and is encompassed by the Jucar River Basin. Over the past 30 years, socioeconomic development within the region has been largely due ...[+]
Palabras clave: Groundwater abstraction , Groundwater/surface-water relations , MODFLOW , Numerical modeling , Spain , Aquifer , Groundwater resource , Groundwater-surface water interaction , Numerical model , Pumping , Resource depletion , River , River discharge , Three-dimensional modeling , Water level , Water storage , Jucar Basin
Derechos de uso: Cerrado
Fuente:
HYDROGEOLOGY JOURNAL. (issn: 1431-2174 )
DOI: 10.1007/s10040-010-0694-x
Editorial:
SPRINGER
Versión del editor: http://dx.doi.org/10.1007/s10040-010-0694-x
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CGL2008-06394-C02-02/ES/SISTEMA DE INFORMACION HIDROLOGICO DEL SISTEMA MANCHA ORIENTAL (SE ESPAÑOL)/
Agradecimientos:
This study was funded by the Spanish Government under research grant CGL2008-06394-C02-02/BTE. Special thanks go to the Jucar Water Authority (CHJ) and stakeholders (JCRMO) in the Mancha Oriental System for providing the ...[+]
Tipo: Artículo

References

Calera A, Medrano J, Vela A, Castaño S (1999) GIS tools applied to the sustainable management of hydric resources: application to the aquifer system 08-29. Agric Water Manage 40:207–220

Calver A (2001) Riverbed permeabilities: information from pooled data. Ground Water 39:546–555

Castaño S, Sanz D, Gómez-Alday JJ (2009) Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water Resour Manage 24:795–814 [+]
Calera A, Medrano J, Vela A, Castaño S (1999) GIS tools applied to the sustainable management of hydric resources: application to the aquifer system 08-29. Agric Water Manage 40:207–220

Calver A (2001) Riverbed permeabilities: information from pooled data. Ground Water 39:546–555

Castaño S, Sanz D, Gómez-Alday JJ (2009) Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water Resour Manage 24:795–814

DGOH (1988) Estudio de la explotación de aguas subterráneas en el acuífero de la Mancha Oriental y su influencia sobre los caudales del río Júcar [Study of the exploitation of groundwater in the Mancha Oriental Aquifer and its influence of the Jucar river flow]. DGOH, Madrid

DGOH (1993) Estudio de seguimiento de impacto de las extracciones de aguas subterráneas en los acuíferos de la Mancha Oriental y los caudales del río Júcar. Masrid [Monitoring study of the impact of groundwater abstractions on Mancha Oriental Aquifer and Jucar river flow]. DGOH, Madrid

Doherty J (2004) PEST model-independent parameter estimation users manual. Watermark, Brisbane, Australia

Estrela T (2004) Jucar Pilot River Basin: provisional article 5 report pursuant to the Water Framework Directive. Ministerio de Medio Ambiente, Valencia, Spain Available via http://www.phjucar.com/docs/otros_docs/Article_5_complete.pdf . Cited 09 November 2010

Fernández-Sanchez JA, Lucena Bonny C, Tapia Granados F (1983) Descripción y resultados del modelo matemático del acuífero de Albacete [Description and results of mathematical modelling of the aquifers in Albacete]. III Simposio de Hidrogeología, IGME, Madrid, pp 125–131

Fleckenstein JH, Suzuki E, Fogg G (2001) Options for conjunctive water management to restore fall flows in the Consumnes River basin, California. In: Mariño MA, Simnovic SP (eds) Integrated water resources management. IAHS publication 272, IAHS, Wallingford, UK, pp 175–182

Fleckenstein JH, Anderson M, Fogg G, Mount J (2004) Managing surface water-groundwater to restore fall flows in the Cosumnes River. J Water Resour Plann Manage 130(4):301–310

Fleckenstein JH, Niswonger RG, Fogg G (2006) River–aquifer interactions, geologic heterogeneity, and low-flow management. Ground Water 44:837–852

Font E (2004) Colaboración y desarrollo de un modelo matemático distribuido de flujo subterráneo de la Unidad Hidrogeológica 08.29 Mancha Oriental en las provincias de Albacete, Cuenca y Valencia [Collaboration and development of a distributed mathematical model of groundwater flow in the hydrogeological unit 08.29, Eastern Mancha in Albacete, Cuenca and Valencia provinces]. MSc Thesis, Polytechnical University of Valencia, Spain. http://www.chj.es/medioambiente/planificacionhidrologica/Documents/Mejora%20del%20Conocimiento/MEMORIAPFCOPH.pdf . Cited 09 November 2010

Gorelick SM (eds) (1986) Conjunctive water use: understanding and managing surfacewater-groundwater interactions. IAHS publication no. 156, IAHS, Wallingford, UK

Hamm SY, Cheong JY, Kim HS (2005) Comparing inversion and trial-and-error methods to determine optimum yield at a riverbank filtration site, Korea. Salt Lake City Annual Meeting. Geol Soc Am Abst 37(7)1–66

Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular groundwater model-User guide to modularization concepts and the groundwater flow process. US Geol Surv Open-File Rep 00–92, 121 pp

IGME (1980) El sistema hidrogeológico de Albacete (Mancha Oriental): sus recursos en aguas subterráneas, utilización actual y posibilidades futuras [The Albacete hydrogeological system (Mancha Oriental): groundwater resources, actual uses and future scope]. IGME, Madrid

IGME (2006) Modelo Matemático de flujo de la Unidad Hidrogeológica 08.29, Mancha Oriental [Mathematical modeling of flow of the hydrogeological unit 08.29, eastern Mancha]. IGME, Madrid

Jagelke J, Barthel R (2005) Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model. ADGEO 5:105–111

Langhoff JH, Rasmussen KR, Christensen S (2006) Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J Hydrol 320:342–358

Martínez-Santos P, Llamas MR, Martínez-Alfaro P (2008) Vulnerability assessment of groundwater resources: a modelling-based approach to the Mancha Occidental aquifer, Spain. Environ Modell Softw 23:1145–1162

McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Technical Manual of Water Resources Investigation, Book 6, US Geological Survey, Reston, Va, 586 pp

Nemeth MS, Solo-Gabriele HM (2002) Evaluation of the use of reach transmissivity to quantify exchange between groundwater and surface water. J Hydrol 274:145–159

Osman YZ, Bruen MP (2002) Modelling stream-aquifer seepage in alluvial aquifer: an improved loosing-stream package for MODFLOW. J Hydrol 264:60–86

Pisinaras V, Petalas C, Tsihrintzis VA, Zagana E (2007) A groundwater flow model for water resources management in the Ismarida plain, north Greece. Environ Model Assess 12:75–89

Pulido-Velazquez AM, Sahuquillo A, Ochoa-Rivera C, Pulido-Velazqueza D (2005) Modeling of stream–aquifer interaction: the embedded multireservoir model. J Hydrol 313:166–181

Rodríguez LB, Cello PA, Vionnet CA (2005) Modeling stream-aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeol J 14:591–602

Ruiz JM (1999) Modelo distribuido para la evaluación de recursos hídricos [Distributed model for water resource assessment]. CEDEX, Madrid, 245 pp

Rushton K (2007) Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers. J Hydrol 334:262–281

Sanz D (2005) Contribución a la caracterización geométrica de las unidades hidrogeológicas que integran el sistema de acuíferos de la Mancha oriental [Contribution to the geometrical characterization of the hydrogeological unit which forms the Mancha Oriental aquifers system]. PhD Thesis, Univ. Complutense de Madrid, Spain

Sanz D, Gómez-Alday JJ, Castaño S, Moratalla A, De las Heras J, Martínez Alfaro PM (2009) Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeol J 17:1375–1391

Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

Tóth J (1970) A conceptual model of the groundwater regime and the hydrogeological environment. J Hydrol 10:164–176

Trescott PC (1975) Documentation of a finite difference model for simulation of three dimensional ground-water flow. US Geol Surv Open-File Rep 75-438, 48 pp

UCLM (2008) Hydrological model for estimation recharge and evapotranspiration by remote sensing and GIS. UCLM, Albacete, Spain. http://www.hidromore.es/ . Cited 12 November 2010

Vázquez-Suñe E, Abarca E, Carrera J, Capino B, Gámez D, Pool M, Simó T, Batlle F, Niñerota JM, Ibáñez X (2006) Groundwater modelling as a tool for the European Water Framework Directive (WFD) application: the Llobregat case. Phys Chem Earth 31:1015–1029

Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. In: U.S. National report to International Union of Geodesy and Geophysics 19911994. Rev Geophys 33(Suppl):985–994

Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeological thought. Ground Water 38:423–429

Younger PL (1995) Modelling river–aquifer interactions. In: Younger PL (ed) Proc BHS National Meeting. British Hydrological Society Occasional Paper no. 6, BHS, London

Zume J, Tarhule A (2008) Simulating the impacts of groundwater pumping on stream–aquifer dynamics in semiarid northwestern Oklahoma, USA. Hydrogeol J 16:797–810

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem