- -

Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain)

Show simple item record

Files in this item

dc.contributor.author Sanz, David es_ES
dc.contributor.author Castano, Santiago es_ES
dc.contributor.author Cassiraga ., Eduardo Fabián es_ES
dc.contributor.author Sahuquillo Herráiz, Andrés es_ES
dc.contributor.author Gomez-Alday, J.J. es_ES
dc.contributor.author Peña Haro, Salvador es_ES
dc.contributor.author Calera, Alfonso
dc.date.accessioned 2013-07-05T10:10:02Z
dc.date.issued 2011
dc.identifier.issn 1431-2174
dc.identifier.uri http://hdl.handle.net/10251/30668
dc.description.abstract The Mancha Oriental System (MOS, 7,260 km2) is one of the largest aquifers within Spain, and is encompassed by the Jucar River Basin. Over the past 30 years, socioeconomic development within the region has been largely due to intensive use of groundwater resources for irrigating crops (1,000 km2). Groundwater pumping (406 million m3/year) has provoked a steady drop in the groundwater level and a reduction of MOS discharge to the Jucar River. The study aims to characterize the river-aquifer relationship, to determine the influence that groundwater abstraction has on the river discharge. This research has advanced a three-dimensional large-scale numerical groundwater-flow model (MODFLOW 2000) in order to spatially and temporally evaluate, quantify and predict the river-aquifer interactions that are influenced by groundwater abstraction in MOS. It is demonstrated that although groundwater abstraction increased considerably from the early 1980s to 2000, the depletion of water stored in the aquifer was lower than might be expected. This is mainly due to aquifer recharge from the Jucar River, induced by groundwater abstraction. The area of disconnection between the river and the water table (i. e. where groundwater head is lower than the riverbed) is found to have spread 20km downstream from its position before pumping started. © 2010 Springer-Verlag. es_ES
dc.description.sponsorship This study was funded by the Spanish Government under research grant CGL2008-06394-C02-02/BTE. Special thanks go to the Jucar Water Authority (CHJ) and stakeholders (JCRMO) in the Mancha Oriental System for providing the information necessary. The content of this report does not represent the view of CHJ and JCRMO. en_EN
dc.language Inglés es_ES
dc.publisher SPRINGER es_ES
dc.relation Spanish Government [CGL2008-06394-C02-02/BTE] es_ES
dc.relation.ispartof HYDROGEOLOGY JOURNAL es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Groundwater abstraction es_ES
dc.subject Groundwater/surface-water relations es_ES
dc.subject MODFLOW es_ES
dc.subject Numerical modeling es_ES
dc.subject Spain es_ES
dc.subject Aquifer es_ES
dc.subject Groundwater resource es_ES
dc.subject Groundwater-surface water interaction es_ES
dc.subject Numerical model es_ES
dc.subject Pumping es_ES
dc.subject Resource depletion es_ES
dc.subject River es_ES
dc.subject River discharge es_ES
dc.subject Three-dimensional modeling es_ES
dc.subject Water level es_ES
dc.subject Water storage es_ES
dc.subject Jucar Basin es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain) es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10040-010-0694-x
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Sanz, D.; Castano, S.; Cassiraga ., EF.; Sahuquillo Herráiz, A.; Gomez-Alday, J.; Peña Haro, S.; Calera, A. (2011). Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). HYDROGEOLOGY JOURNAL. 19(2):475-487. doi:10.1007/s10040-010-0694-x es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10040-010-0694-x es_ES
dc.description.upvformatpinicio 475 es_ES
dc.description.upvformatpfin 487 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 220307
dc.relation.references Calera A, Medrano J, Vela A, Castaño S (1999) GIS tools applied to the sustainable management of hydric resources: application to the aquifer system 08-29. Agric Water Manage 40:207–220 es_ES
dc.relation.references Calver A (2001) Riverbed permeabilities: information from pooled data. Ground Water 39:546–555 es_ES
dc.relation.references Castaño S, Sanz D, Gómez-Alday JJ (2009) Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water Resour Manage 24:795–814 es_ES
dc.relation.references DGOH (1988) Estudio de la explotación de aguas subterráneas en el acuífero de la Mancha Oriental y su influencia sobre los caudales del río Júcar [Study of the exploitation of groundwater in the Mancha Oriental Aquifer and its influence of the Jucar river flow]. DGOH, Madrid es_ES
dc.relation.references DGOH (1993) Estudio de seguimiento de impacto de las extracciones de aguas subterráneas en los acuíferos de la Mancha Oriental y los caudales del río Júcar. Masrid [Monitoring study of the impact of groundwater abstractions on Mancha Oriental Aquifer and Jucar river flow]. DGOH, Madrid es_ES
dc.relation.references Doherty J (2004) PEST model-independent parameter estimation users manual. Watermark, Brisbane, Australia es_ES
dc.relation.references Estrela T (2004) Jucar Pilot River Basin: provisional article 5 report pursuant to the Water Framework Directive. Ministerio de Medio Ambiente, Valencia, Spain Available via http://www.phjucar.com/docs/otros_docs/Article_5_complete.pdf . Cited 09 November 2010 es_ES
dc.relation.references Fernández-Sanchez JA, Lucena Bonny C, Tapia Granados F (1983) Descripción y resultados del modelo matemático del acuífero de Albacete [Description and results of mathematical modelling of the aquifers in Albacete]. III Simposio de Hidrogeología, IGME, Madrid, pp 125–131 es_ES
dc.relation.references Fleckenstein JH, Suzuki E, Fogg G (2001) Options for conjunctive water management to restore fall flows in the Consumnes River basin, California. In: Mariño MA, Simnovic SP (eds) Integrated water resources management. IAHS publication 272, IAHS, Wallingford, UK, pp 175–182 es_ES
dc.relation.references Fleckenstein JH, Anderson M, Fogg G, Mount J (2004) Managing surface water-groundwater to restore fall flows in the Cosumnes River. J Water Resour Plann Manage 130(4):301–310 es_ES
dc.relation.references Fleckenstein JH, Niswonger RG, Fogg G (2006) River–aquifer interactions, geologic heterogeneity, and low-flow management. Ground Water 44:837–852 es_ES
dc.relation.references Font E (2004) Colaboración y desarrollo de un modelo matemático distribuido de flujo subterráneo de la Unidad Hidrogeológica 08.29 Mancha Oriental en las provincias de Albacete, Cuenca y Valencia [Collaboration and development of a distributed mathematical model of groundwater flow in the hydrogeological unit 08.29, Eastern Mancha in Albacete, Cuenca and Valencia provinces]. MSc Thesis, Polytechnical University of Valencia, Spain. http://www.chj.es/medioambiente/planificacionhidrologica/Documents/Mejora%20del%20Conocimiento/MEMORIAPFCOPH.pdf . Cited 09 November 2010 es_ES
dc.relation.references Gorelick SM (eds) (1986) Conjunctive water use: understanding and managing surfacewater-groundwater interactions. IAHS publication no. 156, IAHS, Wallingford, UK es_ES
dc.relation.references Hamm SY, Cheong JY, Kim HS (2005) Comparing inversion and trial-and-error methods to determine optimum yield at a riverbank filtration site, Korea. Salt Lake City Annual Meeting. Geol Soc Am Abst 37(7)1–66 es_ES
dc.relation.references Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular groundwater model-User guide to modularization concepts and the groundwater flow process. US Geol Surv Open-File Rep 00–92, 121 pp es_ES
dc.relation.references IGME (1980) El sistema hidrogeológico de Albacete (Mancha Oriental): sus recursos en aguas subterráneas, utilización actual y posibilidades futuras [The Albacete hydrogeological system (Mancha Oriental): groundwater resources, actual uses and future scope]. IGME, Madrid es_ES
dc.relation.references IGME (2006) Modelo Matemático de flujo de la Unidad Hidrogeológica 08.29, Mancha Oriental [Mathematical modeling of flow of the hydrogeological unit 08.29, eastern Mancha]. IGME, Madrid es_ES
dc.relation.references Jagelke J, Barthel R (2005) Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model. ADGEO 5:105–111 es_ES
dc.relation.references Langhoff JH, Rasmussen KR, Christensen S (2006) Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J Hydrol 320:342–358 es_ES
dc.relation.references Martínez-Santos P, Llamas MR, Martínez-Alfaro P (2008) Vulnerability assessment of groundwater resources: a modelling-based approach to the Mancha Occidental aquifer, Spain. Environ Modell Softw 23:1145–1162 es_ES
dc.relation.references McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Technical Manual of Water Resources Investigation, Book 6, US Geological Survey, Reston, Va, 586 pp es_ES
dc.relation.references Nemeth MS, Solo-Gabriele HM (2002) Evaluation of the use of reach transmissivity to quantify exchange between groundwater and surface water. J Hydrol 274:145–159 es_ES
dc.relation.references Osman YZ, Bruen MP (2002) Modelling stream-aquifer seepage in alluvial aquifer: an improved loosing-stream package for MODFLOW. J Hydrol 264:60–86 es_ES
dc.relation.references Pisinaras V, Petalas C, Tsihrintzis VA, Zagana E (2007) A groundwater flow model for water resources management in the Ismarida plain, north Greece. Environ Model Assess 12:75–89 es_ES
dc.relation.references Pulido-Velazquez AM, Sahuquillo A, Ochoa-Rivera C, Pulido-Velazqueza D (2005) Modeling of stream–aquifer interaction: the embedded multireservoir model. J Hydrol 313:166–181 es_ES
dc.relation.references Rodríguez LB, Cello PA, Vionnet CA (2005) Modeling stream-aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeol J 14:591–602 es_ES
dc.relation.references Ruiz JM (1999) Modelo distribuido para la evaluación de recursos hídricos [Distributed model for water resource assessment]. CEDEX, Madrid, 245 pp es_ES
dc.relation.references Rushton K (2007) Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers. J Hydrol 334:262–281 es_ES
dc.relation.references Sanz D (2005) Contribución a la caracterización geométrica de las unidades hidrogeológicas que integran el sistema de acuíferos de la Mancha oriental [Contribution to the geometrical characterization of the hydrogeological unit which forms the Mancha Oriental aquifers system]. PhD Thesis, Univ. Complutense de Madrid, Spain es_ES
dc.relation.references Sanz D, Gómez-Alday JJ, Castaño S, Moratalla A, De las Heras J, Martínez Alfaro PM (2009) Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeol J 17:1375–1391 es_ES
dc.relation.references Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67 es_ES
dc.relation.references Tóth J (1970) A conceptual model of the groundwater regime and the hydrogeological environment. J Hydrol 10:164–176 es_ES
dc.relation.references Trescott PC (1975) Documentation of a finite difference model for simulation of three dimensional ground-water flow. US Geol Surv Open-File Rep 75-438, 48 pp es_ES
dc.relation.references UCLM (2008) Hydrological model for estimation recharge and evapotranspiration by remote sensing and GIS. UCLM, Albacete, Spain. http://www.hidromore.es/ . Cited 12 November 2010 es_ES
dc.relation.references Vázquez-Suñe E, Abarca E, Carrera J, Capino B, Gámez D, Pool M, Simó T, Batlle F, Niñerota JM, Ibáñez X (2006) Groundwater modelling as a tool for the European Water Framework Directive (WFD) application: the Llobregat case. Phys Chem Earth 31:1015–1029 es_ES
dc.relation.references Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. In: U.S. National report to International Union of Geodesy and Geophysics 19911994. Rev Geophys 33(Suppl):985–994 es_ES
dc.relation.references Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeological thought. Ground Water 38:423–429 es_ES
dc.relation.references Younger PL (1995) Modelling river–aquifer interactions. In: Younger PL (ed) Proc BHS National Meeting. British Hydrological Society Occasional Paper no. 6, BHS, London es_ES
dc.relation.references Zume J, Tarhule A (2008) Simulating the impacts of groundwater pumping on stream–aquifer dynamics in semiarid northwestern Oklahoma, USA. Hydrogeol J 16:797–810 es_ES


This item appears in the following Collection(s)

Show simple item record